Previous Page  17 / 18 Next Page
Information
Show Menu
Previous Page 17 / 18 Next Page
Page Background

Two-way estimates of porous solid body elasticity moduli

Engineering Journal: Science and Innovation

# 12·2017 17

Two-way estimates of porous solid body elasticity moduli

© V.S. Zarubin, I.Yu. Saveleva, E.S. Sergeeva

Bauman Moscow State Technical University, Moscow, 105005, Russia

The dual variational formulation of the problem of linear elasticity of the porous non-

homogeneous solid body consisting of the chaotically directed isotropic fragments with

different elastic characteristics is used for constructing the two-way estimates of the ef-

fective elastic behaviour of such body. We have conducted the quantitative analysis of

these estimates and compared them with the known previously published results. The pre-

sented calculated ratios can be applied for forecasting the effective values of elasticity

moduli of the porous composite material reinforced with isotropic inclusions as well as

the materials obtained by means of powder metallurgical techniques and self-

propagating high-temperature synthesis.

Keywords:

porous solid body, effective values of the elasticity moduli, dual variational

formulation, two-way estimates

REFERENCES



Komkov M.A., Tarasov V.A.

Nauka i obrazovanie: Nauchnoe izdanie — Sci-

ence and Education: Scientific Publication

, 2014, no. 12.

DOI: 10.7463/1214.0745284



Nazarenko L.V. Thermoelastic Properties of Ortotropic Porous Materials

. Inter-

national Applied Mechanics,

1997, vol. 33, no. 2, pp. 114–122.



Fedosova N.A., Koltsova E.M., Popova N.A., Zharikov E.V.

Novye ogneupory —

Refractories and Industrial Ceramics

, 2015, no. 12, pp. 13–17.



Pogozhev Yu.S., Potanin A.Yu., Levashov E.A., Kovalev D.Yu.

Izvestiya vuzov.

Poroshkovaya metallurgiya i funktsionalnye pokrytiya — Russian Journal of

Non-Ferrous Metals

, 2014, no. 4, pp. 19–29.



Amosov A.P., Samboruk A.R., Samboruk A.A., Ermoshkin A.A., Zakamov D.V.,

Krivolutskiy K.S.

Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye

pokrytiya — Russian Journal of Non-Ferrous Metals

, 2013, no. 4, pp. 31–38.



Zarubin V.S.

Modelirovanie

[Modeling]. Moscow, Akademiya Publ., 2013, 336 p.



Zarubin V.S., Kuvyrkin G.N.

Matematicheskie modeli mekhaniki i elektro-

dinamiki sploshnoy sredy

[Mathematical models of mechanics and electrody-

namics of continuous media]. Moscow, BMSTU Publ., 2008, 512 p.



Shermergor T.D.

Teoriya uprugosti mikroneodnorodnykh sred

[Inhomogeneous

media elasticity theory]. Moscow, Nauka Publ., 1977, 400 p.



Golovin N.N., Zarubin V.S., Kuvyrkin G.N.

Vestnik MGTU im. N.E. Baumana.

Seriya: Estestvennye nauki — Herald of the Bauman Moscow State Technical

University. Series Natural Sciences

, 2009, no. 3, pp. 36–49.



Bruno G., Efremov A.M., Levandovskyi A.N., Clausen B. Connecting the mac-

ro- and microstrain responses in technical porous ceramics: modeling and expe-

rimental validations.

Journal of Materials Science

, 2011, vol. 46, pp. 161–173.



Roberts A., Garboczi E. Elastic properties of model porous ceramics.

Journal of

the American Ceramic Society

, 2000, vol. 83, no. 12, pp. 3041–3048.

DOI: 10.1111/j.1151-2916.2000.tb01680.x



Torquato S. Random Heterogeneous Media: Microstructure and Improved

Bounds on Elastic Properties.

Applied Mechanics Reviews

, 1991, vol. 44,

pp. 37–76.