Previous Page  20 / 21 Next Page
Information
Show Menu
Previous Page 20 / 21 Next Page
Page Background

Ю.И. Димитриенко, Е.А. Губарева, И.С. Шалыгин

20

Thin sells theory based on the asymptotic analysis

of three-dimensional equations of the elasticity theory

© Yu.I. Dimitrienko, E.A. Gubareva, I.S. Shalygin

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article presents main relations for a new theory of thin multilayer anisotropic shells.

The main equations of the shell theory suggested were deduced from general three-

dimensional theory of elasticity by means of asymptotic expansions over small parameter

without any hypothesis concerning displacement and stress distribution over thickness.

It

is shown that the averaged problem of the shell theory developed proves to be similar to

the Kirchhoff—Love shell theory, but there are some differences in constitutive relations,

that contain derivatives for membrane strains. The method suggested allows one to cal-

culate all six stress tenor components including transverse normal stresses and stresses

of interlayer shear of thin elastic shells.

Keywords:

viscoelastic composites laminated fibrous composites, elastic-dissipative

properties, steady vibrations, tangent of loss angle, complex elastic modules, method of

asymptotic averaging.

REFERENCES

[1]

Grigolyuk E.I., Kulikov G.M.

Mekhanika kompozitnykh materialov — Mechan-

ics of Composite Materials

, 1988, vol. 24, no. 4, pp. 698–704.

[2]

Sheshenin S.V.

Izv. RAN. MTT — Proc. of the Russ. Acad. Sci. Mech. Rigid Body

,

2006, no. 6, pp. 71–79.

[3]

Sheshenin S.V., Khodos O.A.

Vychislitel'naya mekhanika sploshnoi sredy —

Computational Continuum Mechanics

, 2011, vol. 4, no. 2, pp. 128–139.

[4]

Nazarov S.A, Sweers G.H, Slutskij A.S.

Matematicheskiy sbornik

Sbornik: Mathematics

., 2011, vol. 202, no. 8, pp. 41–80.

[5]

Akimova E.A., Nazarov S.A., Chechkin G.A.

Asymptotics of the solution of the

problem of deformation of an arbitrary locally periodic thin plate.

Trans. Mosc.

Math. Soc

., 2004, pp. 1–29.

[6]

Zveryaev E.M.

,

Makarov G.I. PMM — J. Appl. Math. Mech

., 2008, vol. 72, iss. 2,

pp. 308–321.

[7]

Zveryaev E.M.

PMM — J. Appl. Math. Mech

., 2003, vol. 67, iss. 3, pp. 472– 483.

[8]

Kohn R.V., Vogelyus M

. Int. J. Solids and Struct

., 1984, vol. 20, no. 4, pp. 333–

350.

[9]

Panasenko G.P., Reztsov M.V.

Dokl. AN SSSR — Reports of Acad. Sci. USSR

,

1987, vol. 294, no. 5, pp. 1061–1065.

[10]

Levinski T., Telega J.J.

Plates, laminates and shells. Asymptotic analysis and

homogenization

. Singapore, London, World Sci. Publ., 2000, 739 p.

[11] Kolpakov A.G.

Homogenized models for thin-walled nonhomogeneous structures

with initial stresses

. Springer Verlag, Berlin, Heidelberg, 2004, 228 p.

[12]

Pobedrya B.E.

Mekhanika kompozitsionnykh materialov

[Mechanics of compo-

site materials]. Moscow, Lomonosov MST Publ., 1984, 336 p.

[13] Bakhvalov N.S., Panasenko G.P.

Osrednenie protsessov v periodicheskikh

sredakh

[Averaging of processes in periodic media]. Moscow, Nauka Publ.,

1984, 356 p.

[14]

Sanchez-Palencia E

.

Non-Homogeneous Media and Vibration Theory

.

Mos-

cow, Mir Publ., 1984, 471 p. (in Russ.).