Н.Е. Зубов, В.Н. Рябченко, М.Н. Поклад, Д.Е. Ефанов, Е.И. Старовойтов
12
Инженерный журнал: наука и инновации
# 5·2017
Universal control laws of stabilizing longitudinal motion
of different types of aircrafts
© N.E. Zubov
1,2
, V.N. Ryabchenko
2
, М.N. Poklad
2
,
D.E. Efanov
1
, Е.I. Starovoytov
1
1
S.P. Korolev Rocket and Space Public Corporation Energia,
Korolev town, Moscow region, 141070, Russia
2
Bauman Moscow State Technical University, Moscow, 105005, Russia
The paper presents the analytically synthesized law of lateral movement stabilization. It
is done for the linearized model of the fourth order lateral movement of an isolated sin-
gle-rotor helicopter, which can be regarded as a universal model for the aircraft lateral
movement of any type and which represents the MIMO system containing two entrances.
The decomposition method of MIMO system modal control, which was previously devel-
oped by the authors, is the basis of the decomposition synthesis. To check the correctness
of the problem, we perform mathematical modeling of the single-rotor helicopter lateral
movement using stabilization laws synthesized analytically. We present graphs of transi-
ent processes of the helicopter lateral movement as well as component changes of the
vector control during the implementation process of the synthesized control laws.
Keywords:
MIMO-system, decomposition, analytical synthesis, longitudinal movement of
aircrafts, dynamic system poles, control matrix
REFERENCES
[1]
Zubov N.E., Mikrin E.A., Ryabchenko V.N., Proletarskii A.V.
Aviatsionnaya
tekhnika. Izvestiya vysshikh uchebnykh zavedeniy. — Izv. VUZ. Aviatsionnaya
Tekhnika (Russian Aeronautics)
, 2015, vol. 58, no. 3, pp. 263–270.
[2]
Zubov N.E., Mikrin E.A., Ryabchenko V.N.
Matrichnye metody v teorii i
praktike sistem avtomaticheskogo upravleniya letatelnykh apparatov
[Matrix
methods in theory and practice of aircraft automatic control systems]. Moscow,
BMSTU Publ., 2016, 666 p.
[3]
Krasovskiy A.A., Vavilov Yu.A., Suchkov A.I.
Sistemy avtomaticheskogo
upravleniya letatelnykh apparatov
[The automatic control system of aircrafts].
Moscow, Zhukovsky Air Force Engineering Academy Publ., 1986, 480 p.
[4]
Mikrin E.A., Zubov N.E., Misrikhanov
M.Sh., Ryabchenko V.N.
Avtomatizatsiya. Sovremennye tekhnologii
—
Automation. Modern
Technologies
, 2015. no. 6, pp. 3–8.
[5]
Li P.Y.
Advanced control systems design
. University of Minnesota, 2012, 89 p.
[6]
Yang K., Orsi R.
IEEE Trans. Automat. Control
,
2007, pp. 2146–2150.
[7]
Mori K.
IEEE Trans. Circ. Sys.
,
2002, vol. 49, pp. 743–75.
[8]
Bhattachrya S. Sparsity based feedback design: A new paradigm in opportunistic
sensing.
Proc. American Control Conf.
, 2011, pp. 3704–3709.
[9]
Blumthaler I., Oberst U.
Linear Algebra Appl.
, 2012, vol. 436 (5–2), pp. 963–1000.
[10]
Bosche J., Bachelier O., Mehdi D. Robust pole placement by static output
feedback.
Proc. 43rd IEEE Conf. Decision & Control. Paradise Island,
Bahamas
, 2004, pp. 869–874.
[11]
Franke M.
International Journal of Control
, 2014, vol. 87 (1), pp. 64–75.
[12]
Zubov N.E., Mikrin E.A., Misrikhanov
M.Sh., Oleynik A.S., Ryabchenko V.N.
Izvestiya RAN. Teoriya i sistemy upravleniya
— Journal of Computer and
Systems Sciences International
, 2014, no. 3, pp. 134–149.