Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

Н.Е. Зубов, В.Н. Рябченко, М.Н. Поклад, Д.Е. Ефанов, Е.И. Старовойтов

12

Инженерный журнал: наука и инновации

# 5·2017

Universal control laws of stabilizing longitudinal motion

of different types of aircrafts

© N.E. Zubov

1,2

, V.N. Ryabchenko

2

, М.N. Poklad

2

,

D.E. Efanov

1

, Е.I. Starovoytov

1

1

S.P. Korolev Rocket and Space Public Corporation Energia,

Korolev town, Moscow region, 141070, Russia

2

Bauman Moscow State Technical University, Moscow, 105005, Russia

The paper presents the analytically synthesized law of lateral movement stabilization. It

is done for the linearized model of the fourth order lateral movement of an isolated sin-

gle-rotor helicopter, which can be regarded as a universal model for the aircraft lateral

movement of any type and which represents the MIMO system containing two entrances.

The decomposition method of MIMO system modal control, which was previously devel-

oped by the authors, is the basis of the decomposition synthesis. To check the correctness

of the problem, we perform mathematical modeling of the single-rotor helicopter lateral

movement using stabilization laws synthesized analytically. We present graphs of transi-

ent processes of the helicopter lateral movement as well as component changes of the

vector control during the implementation process of the synthesized control laws.

Keywords:

MIMO-system, decomposition, analytical synthesis, longitudinal movement of

aircrafts, dynamic system poles, control matrix

REFERENCES

[1]

Zubov N.E., Mikrin E.A., Ryabchenko V.N., Proletarskii A.V.

Aviatsionnaya

tekhnika. Izvestiya vysshikh uchebnykh zavedeniy. — Izv. VUZ. Aviatsionnaya

Tekhnika (Russian Aeronautics)

, 2015, vol. 58, no. 3, pp. 263–270.

[2]

Zubov N.E., Mikrin E.A., Ryabchenko V.N.

Matrichnye metody v teorii i

praktike sistem avtomaticheskogo upravleniya letatelnykh apparatov

[Matrix

methods in theory and practice of aircraft automatic control systems]. Moscow,

BMSTU Publ., 2016, 666 p.

[3]

Krasovskiy A.A., Vavilov Yu.A., Suchkov A.I.

Sistemy avtomaticheskogo

upravleniya letatelnykh apparatov

[The automatic control system of aircrafts].

Moscow, Zhukovsky Air Force Engineering Academy Publ., 1986, 480 p.

[4]

Mikrin E.A., Zubov N.E., Misrikhanov

M.Sh.

, Ryabchenko V.N.

Avtomatizatsiya. Sovremennye tekhnologii

Automation. Modern

Technologies

, 2015. no. 6, pp. 3–8.

[5]

Li P.Y.

Advanced control systems design

. University of Minnesota, 2012, 89 p.

[6]

Yang K., Orsi R.

IEEE Trans. Automat. Control

,

2007, pp. 2146–2150.

[7]

Mori K.

IEEE Trans. Circ. Sys.

,

2002, vol. 49, pp. 743–75.

[8]

Bhattachrya S. Sparsity based feedback design: A new paradigm in opportunistic

sensing.

Proc. American Control Conf.

, 2011, pp. 3704–3709.

[9]

Blumthaler I., Oberst U.

Linear Algebra Appl.

, 2012, vol. 436 (5–2), pp. 963–1000.

[10]

Bosche J., Bachelier O., Mehdi D. Robust pole placement by static output

feedback.

Proc. 43rd IEEE Conf. Decision & Control. Paradise Island,

Bahamas

, 2004, pp. 869–874.

[11]

Franke M.

International Journal of Control

, 2014, vol. 87 (1), pp. 64–75.

[12]

Zubov N.E., Mikrin E.A., Misrikhanov

M.Sh

., Oleynik A.S., Ryabchenko V.N.

Izvestiya RAN. Teoriya i sistemy upravleniya

— Journal of Computer and

Systems Sciences International

, 2014, no. 3, pp. 134–149.