Анализ оптимального трехимпульсного перехода на орбиту искусственного спутника Луны
Инженерный журнал: наука и инновации
# 3
⋅
2016 17
Analysis of optimal three-impulse transfer
to an artificial lunar satellite orbit
© E.S. Gordienko
1,3
, V.V. Ivashkin
2,3
1
Lavochkin Research and Production Association, Khimki, 141400, Russia
2
Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia
3
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article studies a problem of optimal transfer of a spacecraft from the Earth into a
high circular Artificial Lunar Satellite (ALS) polar orbit with the radius of 6000 km. The
single-impulse scheme is compared with the three-impulse one. The analysis is performed
taking into account lunar gravitational field harmonics, gravitational attractions of the
Earth and the Sun, and the engine thrust being limited. The results show that the three-
impulse transfer from the initial selenocentric hyperbolic orbit to the final ALS one is
better in terms of final mass than ordinary single-impulse deceleration. Control parame-
ters implementing this operation and providing virtually the same power consumption as
in the Keplerian case are given. The study reveals that there exists an optimal maximum
distance of the maneuver in the case of real gravitational field, unlike in the Keplerian
case.
Keywords:
spacecraft, lunar trajectories, optimal transfer, three-impulse transfer, lunar
satellite.
REFERENCES
[1]
Ivashkin V.V.
Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na
rasstoyaniya do planet
[Optimising space maneuvres when distances to planets
are limited]. Moscow, Nauka Publ., 1975.
[2]
Frolov K.V., ed.
Mashinostroenie. Entsiklopediya.
[Mechanical Engineering.
Encyclopaedia]. In 40 vols. Vol. IV-22, book 1. Raketno-kosmicheskaya tekhnika
[Missile and aerospace technology]. Moscow, Mashinostroenie Publ., 2012.
[3]
Narimanov G.S., Tikhonravov M.K., ed.
Osnovy teorii poleta kosmicheskikh
apparatov
[Basic aspects of the theory of spacecraft flight]. Moscow,
Mashinostroenie Publ., 1972.
[4]
Standish E.M.
JPL Planetary and Lunar Ephemerides. Interoffice memorandum:
JPL
IOM
312.
F-98-048,
1998,
August
26
.
Available at:
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf[5]
Gordienko E.S., Ivashkin V.V., Lyu V.
Kosmonavtika i raketostroenie
–
Cosmonautics and Rocket Engineering
, 2015, no. 1 (80), pp. 37–47.
[6]
Gordienko E.S., Ivashkin V.V.
Molodezhnyy nauchno-tekhnicheskiy vestnik –
Youth Science and Technology Herald
, 2012, no. 5
.
Available at:
http://sntbul.bmstu.ru/doc/467776.html
[7]
Gordienko E.S., Lyu V.
Molodezhnyy nauchno-tekhnicheskiy vestnik –
Youth Science and Technology Herald
, 2013, no. 9. Available at:
http://sntbul.bmstu.ru/doc/606352.html[8]
Elyasberg P.E.
Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli
[Introduction to the theory of artificial Earth satellites]. Moscow, Nauka Publ., 1965.
[9]
Okhotsimskiy D.E., Sikharulidze Yu.G.
Vvedenie v mekhaniku kosmicheskogo
poleta
[Introduction to the mechanics of space flight]. Moscow, Nauka Publ.,
1990.
[10]
Stepanyants V.A., Lvov D.V.
Matematicheskoe modelirovanie – Mathematical
Modeling
, 2000, vol. 12, no. 6, pp. 9–14.