Previous Page  17 / 18 Next Page
Information
Show Menu
Previous Page 17 / 18 Next Page
Page Background

Анализ оптимального трехимпульсного перехода на орбиту искусственного спутника Луны

Инженерный журнал: наука и инновации

# 3

2016 17

Analysis of optimal three-impulse transfer

to an artificial lunar satellite orbit

© E.S. Gordienko

1,3

, V.V. Ivashkin

2,3

1

Lavochkin Research and Production Association, Khimki, 141400, Russia

2

Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia

3

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article studies a problem of optimal transfer of a spacecraft from the Earth into a

high circular Artificial Lunar Satellite (ALS) polar orbit with the radius of 6000 km. The

single-impulse scheme is compared with the three-impulse one. The analysis is performed

taking into account lunar gravitational field harmonics, gravitational attractions of the

Earth and the Sun, and the engine thrust being limited. The results show that the three-

impulse transfer from the initial selenocentric hyperbolic orbit to the final ALS one is

better in terms of final mass than ordinary single-impulse deceleration. Control parame-

ters implementing this operation and providing virtually the same power consumption as

in the Keplerian case are given. The study reveals that there exists an optimal maximum

distance of the maneuver in the case of real gravitational field, unlike in the Keplerian

case.

Keywords:

spacecraft, lunar trajectories, optimal transfer, three-impulse transfer, lunar

satellite.

REFERENCES

[1]

Ivashkin V.V.

Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na

rasstoyaniya do planet

[Optimising space maneuvres when distances to planets

are limited]. Moscow, Nauka Publ., 1975.

[2]

Frolov K.V., ed.

Mashinostroenie. Entsiklopediya.

[Mechanical Engineering.

Encyclopaedia]. In 40 vols. Vol. IV-22, book 1. Raketno-kosmicheskaya tekhnika

[Missile and aerospace technology]. Moscow, Mashinostroenie Publ., 2012.

[3]

Narimanov G.S., Tikhonravov M.K., ed.

Osnovy teorii poleta kosmicheskikh

apparatov

[Basic aspects of the theory of spacecraft flight]. Moscow,

Mashinostroenie Publ., 1972.

[4]

Standish E.M.

JPL Planetary and Lunar Ephemerides. Interoffice memorandum:

JPL

IOM

312.

F-98-048,

1998,

August

26

.

Available at:

ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf

[5]

Gordienko E.S., Ivashkin V.V., Lyu V.

Kosmonavtika i raketostroenie

Cosmonautics and Rocket Engineering

, 2015, no. 1 (80), pp. 37–47.

[6]

Gordienko E.S., Ivashkin V.V.

Molodezhnyy nauchno-tekhnicheskiy vestnik –

Youth Science and Technology Herald

, 2012, no. 5

.

Available at:

http://sntbul.bmstu.ru/doc

/467776.html

[7]

Gordienko E.S., Lyu V.

Molodezhnyy nauchno-tekhnicheskiy vestnik –

Youth Science and Technology Herald

, 2013, no. 9. Available at:

http://sntbul.bmstu.ru/doc/606352.html

[8]

Elyasberg P.E.

Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli

[Introduction to the theory of artificial Earth satellites]. Moscow, Nauka Publ., 1965.

[9]

Okhotsimskiy D.E., Sikharulidze Yu.G.

Vvedenie v mekhaniku kosmicheskogo

poleta

[Introduction to the mechanics of space flight]. Moscow, Nauka Publ.,

1990.

[10]

Stepanyants V.A., Lvov D.V.

Matematicheskoe modelirovanie – Mathematical

Modeling

, 2000, vol. 12, no. 6, pp. 9–14.