Previous Page  16 / 17 Next Page
Information
Show Menu
Previous Page 16 / 17 Next Page
Page Background

Ю.В. Баркин, М.Ю. Баркин

16

The movement of the solid core in the cavity

of a rotating non-spherical shell

© Yu.V. Barkin

1

,

M.Yu

. Barkin

2

1

Sternberg Astronomical Institute at Lomonosov Moscow State University,

Moscow, 119991, Russia

2

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article presents the analysis of the integrable cases of the restricted problem of

translational-rotational motion of a rigid body (core) in the cavity of steady rotating

gravitating non-spherical shell. Only the gravitational interaction of bodies is

considered. The canonical equations of rotational motion in Euler variables and Andoyer

variables were obtained

.

The cases of integrability of the restricted problem when the

core is an axisymmetric rigid body are studied.

In these cases solution of the problem is

reduced to a simple quadrature reversal and can be represented in terms of elliptic

functions.

This research reveals new possibilities for the study of relationships of core

and heavenly body mantle forced relative motions and variations of natural processes on

the planets and satellites.

Dynamic studies of the Earth mantle — liquid core — rigid

core system are of great interest for the modern geodynamics.

Keywords:

non-spherical rigid body, elliptic integrals, Andoyer variables, the mantle –

core system, microgravity, interaction of blocks, Space Station blocks.

REFERENCES

[1]

Duboshin G.N.

Nebesnaya mekhanika. Osnovnye zadachi i metody

[Celestial

Mechanics. The Main Objectives and Methods]. Moscow, Nauka Publ., 1968,

801 p.

[2]

Barkin Yu.V.

Dinamika sistemy nesferichnykh nebesnykh tel i teoriya

vrashcheniya Luny.

Diss. …

doct. fiz.-mat. nauk [Dynamics of a Non-Spherical

Celestial Body System and the Theory of the Moon’s Rotation. Dr. phys. and

math. Sci. diss.]. Moscow, SAI Moscow State University Publ., 1989, 412 p.

[3]

Barkin Yu.V. Integrability and Integrable Cases of Some Problems of Rotational

Motion of the Celestial Bodies.

IAU Colloquium 165. Dynamics and Astrometry

of Natural and Artificial Celestial Bodies (Poznan, Poland, July 1–5, 1996).

Book of Abstracts

. Paris, Bureau Des Longitudes Publ., 1996, p. 16.

[4]

Chandrasekhar S.

Ellipsoidalnye figury ravnovesiya

. [Ellipsoidal Figures of

Equilibrium]. Moscow, Mir Publ., 1973, 288 p. (In Russian).

[5]

Barkin Yu.V. K dinamike tverdogo yadra Zemli [On the Dynamics of the Solid

Earth’s Core]

.Trudy Gos. Astron. In-ta im. P.K. Shternberga MGU

[Proceedings

of the SAI MSU], 1997, vol. 65, pp. 107–130.

[6]

Arkhangelskiy Yu.A.

Analiticheskaya dinamika tverdogo tela

[The analytical

dynamic of the rigid body]. Moscow, Nauka Publ., 1977, 328 p.

[7]

Song X., Rechards P.G.

Nature

, 1996, vol. 382, no. 6, pp. 221–224.

[8]

Barkin Yu.V. Vozmozhnoe dolgoperiodicheskoe dvizhenie tverdogo yadra

[Possible Long Term Periodic Motion of the Solid Core].

Nauchnye materialy

Vserossiyskoy konferentsii “Geodinamika I evolutsiya Zemli”. Novosibirsk, 12–

15 noyabrya 1996

[Proceedings of All-Russian Conference “Geodynamics and

Evolution of the Earth”, Novosibirsk, November 12–15, 1996]. Novosibirsk,

1996, pp. 10–13.