Модилирование динамической устойчивости цилиндрической оболочки…
13
Simulation of the dynamic stability of cylindrical shell
under the action of external overpressure
© V.M. Dubrovin, T.A. Butina
Bauman Moscow State Technical University, Moscow, 105005, Russia
The suggested method is to calculate
dynamic stability of cylindrical shells under loading
of external
excessive pressure
, distributed over shell surface. As an example, we consider
the case where the pressure varies in accordance with the linear law
Keywords:
cylindrical shell, прогиб, the equilibrium position, chart, the dynamic factor.
REFERENCES
[1] Volmir A.S.
Ustoichivost’ deformiruemykh system
[Stability of deformable sys-
tems]. Moscow, Nauka Publ., 1967, 987 p.
[2] Belonosov S.M.
Matematicheskoe modelirovanie ravnovesnykh sostoyaniy up-
rugikh tonkikh obolochek
[
Mathematical modeling of the equilibrium states of
thin elastic shells
]. Moscow, Nauka Publ., 1993, 158 p.
[3] Agamirov V.L.
Dinamicheskie zadachi nelineinoy teorii obolochek
[
Dynamic
problems of nonlinear shell theory
]. Moscow, Nauka Publ., 1990, 269 p.
[4] Rabotnov Yu.N.
Problemy mekhaniki deformiruemogo tela
[Problems of solid
mechanics]. Moscow, Nauka Publ., 1991, 194 p.
[5] Zhilin P.A.
Aktualnye problemy mekhaniki. Sbornik statey
[Actual Problems in
Mechanics. Coll. papers]. St.-Petersburg, Institute of Problems of Mechanical
Engineering RAS, 2006, 306 p.
[6] Vlasov V.Z.
Izbrannye Trudy. Obschaya teoriya obolochek
[
Selected works.
General theory of shells
]. Moscow,
Publishing House of the USSR Academy of
Sciences
, 1962, vol. 1, 528 p.
[7] Zhilin P.A.
Osnovy teorii obolochek
[
Fundamentals of the theory of shells]
. St.-
Petersburg, Publishing house of the State Politechnical University, 2006, 166 p.
[8] Dimitrienko Yu.I.
Mekhanika sploshnoy sredy. Tom 2. Universalnye zakony
mekhaniki i elektrodinamiki sploshnoy sredy
[Continuum Mechanics. Vol. 2.
Universal laws of mechanics and electrodynamics of continuous media]. Mos-
cow, BMSTU Publ., 2011, 560 p.
[9] Vorovich I.I.
Matematicheskie problemy nelineinoy teorii pologikh obolochek
[
Mathematical problems of the nonlinear theory of of gently sloping shells
].
Moscow, Nauka Publ., 1989, 373 p.
[10] Kubenko V.D., Kovalchuk P.S., Podchasov N.P.
Nelineinye kolebaniya
tsilindricheskikh obolochek
[
Nonlinear vibrations of cylindrical shells
]. Kiev,
Vyscha shkola, 1989, 207 p.
[11] Narasimhan K.Y., Hoff N.J. Snapping of Imperfect Thin-Walled Circular Cy-
lindrical Shells of Finite Length Trans.
ASME, ser E
, 1971, vol. 38, no. 1, pp.
160–172.
Dubrovin V.M.
(b. 1934) graduated from the Faculty of Mathematics and Mechanics of
the Saratov State University in 1958. Ph.D., Assoc. Pro-fessor of the Computational
Mathematics and Mathematical Physics and of the Higher Mathematics Departments of
Bauman Moscow State Tech-nical University. Research interests: dynamics, strength and
stability of deformable systems; creep of structural materials. He is the author of five
inventions. e-mail: dubrovinvm1934@ mail.ru