Алгоритм нахождения траектории перелета между двумя эллиптическими орбитами
Инженерный журнал: наука и инновации
# 6·2017 11
Algorithm for identifying the transfer trajectory
between two elliptic orbits
© N.V. Ostrovskiy
Vyatka State University, Kirov, 610000, Russia
This article for the first time ever presents an algorithm for the transfer elliptic orbit be-
tween two elliptic orbits. We have solved the following problems: constructing the ellipse
in two radius-vectors emerging from the same focal point, calculating acceleration and
deceleration velocities impulses, computing the deceleration needed for the orbit plane
change. This study is of great importance because the other well-known publications ei-
ther do not consider such problems or do not suggest particular computation algorithms.
We have calculated the transfer orbit length by the numerical quadrature method. The
motion along the elliptic orbit is viewed as the superposition of the circular and radial
motions. It is shown that with the increase of the transfer ellipse semi-major axis length
its eccentricity also increases. It results in the increase of the spacecraft radial velocity in
the transfer orbit whereupon the acceleration and deceleration velocities also increase.
Keywords:
transfer orbit, elliptic orbit, flight trajectory to Mars, numerical quadrature
method
REDERENCES
Larson W.J., Wertz J.R., ed.
Space Mission Analysis and Design
. Torrance, Ca-
lifornia, Microcosm Press Publ., Dordrecht, Boston, London, Kluwer Academic
Publ., 2005, 504 p.
Khartov V.V., Yefanov V.V., ed.
Proyektirovaniye avtomaticheskikh kosmich-
eskikh apparatov dlya fundamentalnykh nauchnykh issledovaniy
.
V 3 tom. Tom 2
[Designing unmanned spacecrafts for fundamental scientific research. In 3 vol.,
vol. 2]. Moscow, MAI-Print Publ., 2014, 544 p.
Mitishov Ye.A., Berestova S.A.
Teoreticheskaya mekhanika: statika, kinema-
tika, dinamika
[Theoretical mechanics: statics, kinematics, dynamics]. Moscow,
Izhevsk, Institute of Computer Science Publ., 2005, 176 p.
Drachev M.M., Demin V.G., Klimishin I.A., Churagin V.M.
Astronomiya
[As-
tronomy]. Moscow, Prosveshcheniye Publ., 1983, 384 p.
Aleksandrov A.D., Netsvetayev N.Yu.
Geometriya
[Geometry]. Moscow, Nauka
Publ., 1990, 672 p.
Ostrovskiy N.V. Modeling of the celestial body transition from heliocentric orbit to
planet-centric.
Proc. of International astronomical congress “Astrokazan-2011”,
Kazan, August 22–30.
Kazan, Kazan Federal University, 2011, pp. 188–190.
Chapront J., Francou G.
Ephemerides of planets between 1900 and 2100 (1998
update). Bureau des Longitudes, Group: Dynamics of Solar System (1996).
Available at:
http://cdsarc.u-strasbg.fr/viz-bin/Cat?VI/87
Simonov A.V.
Vestnik NPO im. S.A. Lavochkina
—
Bulletin of Lavochkin Sci-
ence and Production Association
, 2010, no. 1, pp. 14–23.
Karimov I. Lektsiya 11. Giroskopy.
Teoreticheskaya mekhanika
[Theoretical
mechanics. Lecture 11. Gyroscopes]. Available at:
http://www.teoretmeh.ru/dinamika9.htmOstrovskiy N.V.,
Cand. Sc. (Eng.), Assoc. Professor of Vyatka State University. Author
of over 30 works on celestial mechanics and gravitation theory. e-mail:
onv1@yandex.ru