Previous Page  11 / 11
Information
Show Menu
Previous Page 11 / 11
Page Background

Алгоритм нахождения траектории перелета между двумя эллиптическими орбитами

Инженерный журнал: наука и инновации

# 6·2017 11

Algorithm for identifying the transfer trajectory

between two elliptic orbits

© N.V. Ostrovskiy

Vyatka State University, Kirov, 610000, Russia

This article for the first time ever presents an algorithm for the transfer elliptic orbit be-

tween two elliptic orbits. We have solved the following problems: constructing the ellipse

in two radius-vectors emerging from the same focal point, calculating acceleration and

deceleration velocities impulses, computing the deceleration needed for the orbit plane

change. This study is of great importance because the other well-known publications ei-

ther do not consider such problems or do not suggest particular computation algorithms.

We have calculated the transfer orbit length by the numerical quadrature method. The

motion along the elliptic orbit is viewed as the superposition of the circular and radial

motions. It is shown that with the increase of the transfer ellipse semi-major axis length

its eccentricity also increases. It results in the increase of the spacecraft radial velocity in

the transfer orbit whereupon the acceleration and deceleration velocities also increase.

Keywords:

transfer orbit, elliptic orbit, flight trajectory to Mars, numerical quadrature

method

REDERENCES



Larson W.J., Wertz J.R., ed.

Space Mission Analysis and Design

. Torrance, Ca-

lifornia, Microcosm Press Publ., Dordrecht, Boston, London, Kluwer Academic

Publ., 2005, 504 p.



Khartov V.V., Yefanov V.V., ed.

Proyektirovaniye avtomaticheskikh kosmich-

eskikh apparatov dlya fundamentalnykh nauchnykh issledovaniy

.

V 3 tom. Tom 2

[Designing unmanned spacecrafts for fundamental scientific research. In 3 vol.,

vol. 2]. Moscow, MAI-Print Publ., 2014, 544 p.



Mitishov Ye.A., Berestova S.A.

Teoreticheskaya mekhanika: statika, kinema-

tika, dinamika

[Theoretical mechanics: statics, kinematics, dynamics]. Moscow,

Izhevsk, Institute of Computer Science Publ., 2005, 176 p.



Drachev M.M., Demin V.G., Klimishin I.A., Churagin V.M.

Astronomiya

[As-

tronomy]. Moscow, Prosveshcheniye Publ., 1983, 384 p.



Aleksandrov A.D., Netsvetayev N.Yu.

Geometriya

[Geometry]. Moscow, Nauka

Publ., 1990, 672 p.



Ostrovskiy N.V. Modeling of the celestial body transition from heliocentric orbit to

planet-centric.

Proc. of International astronomical congress “Astrokazan-2011”,

Kazan, August 22–30.

Kazan, Kazan Federal University, 2011, pp. 188–190.



Chapront J., Francou G.

Ephemerides of planets between 1900 and 2100 (1998

update). Bureau des Longitudes, Group: Dynamics of Solar System (1996).

Available at:

http://cdsarc.u-strasbg.fr/viz-bin/Cat?VI/

87



Simonov A.V.

Vestnik NPO im. S.A. Lavochkina

Bulletin of Lavochkin Sci-

ence and Production Association

, 2010, no. 1, pp. 14–23.



Karimov I. Lektsiya 11. Giroskopy.

Teoreticheskaya mekhanika

[Theoretical

mechanics. Lecture 11. Gyroscopes]. Available at:

http://www.teoretmeh.ru/dinamika9.htm

Ostrovskiy N.V.,

Cand. Sc. (Eng.), Assoc. Professor of Vyatka State University. Author

of over 30 works on celestial mechanics and gravitation theory. e-mail:

onv1@yandex.ru