Симплекс-метод решения задачи быстродействия при наличии ограничения…
11
Simplex method for solving the brachistochrone
problem at state and control constraints
© V.I. Krasnoshchechenko
Kaluga Branch of Bauman Moscow State Technical University, Kaluga, 248000, Russia
In this paper we consider the solution of the brachistochrone problem for linear time
invariant objects with the scalar constrained control and state parallelepiped constraints.
In the given algorithm we employ the transition from the brachistochrone problem to a
problem of linear programming which is solved by the simplex method. The proposed
method belongs to the group of control parameterization methods.
Keywords:
brachistochrone problem,
state constraints
, state constraint, linear program-
ming, simplex method.
REFERENCES
Gamkrelidze R.V.
Izvestiya AN SSSR — Proc. Acad. Sci. USSR
., 1960, no. 3,
pp. 315–356.
Dubovitsky A.Ya., Milyutin A.A.
Zhurnal vychislitelnoi matematiki i
matematicheskoi fiziki — Journal of Computational Mathematics and
Mathematical Physics,
1968, vol. 8, no. 4, pp. 725–779.
Pupkov K.A., Faldin N.V., Egupov N.D.
Metody sinteza optimal'nykh sistem
avtomaticheskogo upravleniya
[Methods for the synthesis of optimal automatic
control systems]. Moscow, Bauman MSTU Publ., 2000, 512 p.
Buskens C., Maurer H.
J. of Comput.&Appl. Math
., 2000, vol. 120, no. 1–2,
pp. 85–108.
Teo K.L., Goh C.J.,Wong K.H.
A unified computational approach for optimal
control problems
. New York: Longman Scientific and Technical, 1991, 267 p.
Xing A.Q.
J. of Math. Analysis & Appl.
,1984, vol. 186, pp. 514–522.
Balandin D.V., Kogan M.M. Lineinye matrichnye neravenstva v sinteze
regulyatorov pri ogranicheniyakh na upravlenie i fazovye koordinaty [Linear matrix
inequalities in the synthesis of regulators with restrictions on the control and phase
coordinates].
Trudy VIII Mezhdunarodnoi konferentsii "Identifikatsiya sistem i
zadachi upravleniya" SICPRO'09
(
Moskva, 26–30 yanvarya 2009 g.
) [Proceed. of
the VIII Intern. Conf. "System Identification and Control Problems"
SICPRO'09
(Moscow, 26–30 Jan. 2009)], 2009, pp. 31–34.
Blanchini F.
Automatica
, 1995, no 31, pp. 451–461.
Taha H.A.
Operations Research: An Introduction
. 7th Ed. New Jersey, Pearson
Education Inc., 2003, 905 p.
Krasnoschechenko V.I.
(b.1953) graduated from Bauman Moscow Higher Technical
School in 1981. Ph.D., Assoc. Professor of the Automatic Control Systems Department,
Kaluga Branch of Bauman Moscow State Technical University. Research interests in-
clude synthesis of regulators; nonlinear systems; differential geometry, topology, and the
theory of continuous groups in control; optimal control; synthesis of observers.
e-mail: