Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

Математическая модель разлета осколков метеорного тела после разрушения

Инженерный журнал: наука и инновации

# 9·2017 13

Numerically simulated model of meteor body fragments

distribution after destruction

© V.T. Lukashenko

1,2,3

, F.A. Maksimov

1,2

1

Institute of Computer Aided Design of the Russian Academy of Sciences

(ICAD RAS), Moscow, 123056, Russia

2

Lomonosov Moscow State University, Moscow, 119992, Russia

3

Institution of the Russian Academy of Sciences

Dorodnicyn Computing Centre of RAS, Moscow, 119333, Russia

To calculate the flow-around of the meteor body fragments system, we have developed

a simulation technique based on the grid system. This method helps to consider the bo-

dies of various shapes, sizes and masses and also allows for fairly random relative body

position in the flow. It gives an opportunity to implement the algorithm of conjugating

aerodynamic and ballistic analyses. The algorithm was tested through the problem of two

identical circular cylinders dispersion, the cylinders being located on the right line per-

pendicular to the approach flow. The obtained values of the bodies dispersion speed

properly conform to the theoretical estimates. We provide recommendations for applying

the computing technique and describing the dispersion of two circular cylinders of differ-

ent sizes. The article considers the problem of two bodies’ dispersion, the bodies having

the shape of cylinder halves. It is shown that due to the hysteresis effect the bodies must

execute periodic diverging oscillations.

Keywords:

simulation, dynamics, meteor body, destruction, fragments, supersound, flying

REFERENCES

[1]

Petrov K.P.

Aerodinamika tel prosteyshikh form

[Aerodynamics of simplest

shapes bodies]. Moscow, Faktorial Publ., 1998, 432 p.

[2]

Kovalev P.I., Mende N.P.

Albom sverkhzvukovykh techeniy

[The album of su-

personic flows]. St. Petersburg, Polytechnic University Publ., 2011, 251 p.

[3]

Khlebnikov V.S.

Aerotermodinamika elementov letatelnykh apparatov pri

statsionarnom i nestatsionarnom sverkhzvukovom otryvnom obtekanii

[Aero-

thermodynamics of flying vehicles elements during the stationary and nonsta-

tionary supersonic separation flow]. Moscow, Fizmatlit Publ., 2014, 168 p.

[4]

Andreyev A.A., Kholodov A.S.

Zhurnal vychislitelnoy matematiki i ma-

tematicheskoy fiziki — Computational Mathematics and Mathematical Physics

,

1989, vol. 29, no. 1, pp. 142–147.

[5]

Zhdan I.A., Stulov V.P., Stulov P.V.

Doklady Akademii nauk — Doklady Phy-

sics

, 2004, vol. 396, no. 2, pp. 191–193.

[6]

Maksimov F.A. Aerodinamicheskoye vzaimodeistviye dvukh tel v sverkhzvu-

kovom potoke [Aerodynamic coupling of two bodies in the supersonic flow].

Sb.

trudov Mezhdunar. nauchn. konf. „Problemy ballistiki–2006 (Sankt-Peterburg,

19–23 iyunya 2007 g.)”

[Proceedings of the International Scientific Conference

“The problems of ballistics–2006 (St. Petersburg, June 19–23, 2007)”]. St. Pe-

tersburg, 2007, vol. 2, pp. 44–48.

[7]

Barri N.G.

Doklady Akademii nauk — Doklady Physics,

2010, vol. 434, no. 5,

pp. 620–621.

[8]

Maksimov F.A.

Kompyuternyye issledovaniya i modelirovaniye — Computer

Research and Modeling

, 2013, vol. 5, no. 6, pp. 969–980.