А.Ю. Бушуев
10
Инженерный журнал: наука и инновации
# 2·2017
Mathematical model for backup large-area
solar battery disclosure system
©
А.Yu. Bushuev
Bauman Moscow State Technical University, Moscow, 105005, Russia
To improve rope systems multilink solar battery disclosure liability, the article proposes
a backup disclosure system consisting of a lift mechanism (jack), driven by the electric
drive and a rope system synchronization. The mechanism's main feature is a variable ra-
tio depending on the first link steering angle. Rope synchronization system consists of
a roller set connected by cables in a certain way, and the two types of gear mechanisms
to ensure the required gear ratio. The article proposes the power mechanism schematic
diagram and the synchronization system kinematics. The study derives the transmission
dependence from the engine to the first link, gives a disclosure system mathematical
model. In order to determine the disclosure process basic characteristics, we use La-
grange equation of the second kind made up for a solar battery kinetic energy and link-
age simulation (hinged panels weight is attached), where we assume each link to be an
absolutely rigid body. To determine the connections and efforts in cables, we use the
equations d'Alembert. The study suggests an iterative method of accounting for rope syn-
chronization systems elastic deformation.
Keywords
: mathematical model, rope disclosure system, multilink design, solar battery,
deformation
REFERENCES
[1]
Bakunin D.V., Borzykh S.V., Ososov N.S, Schiblev Yu.N.
Matematicheskoe
modelirovanie — Mathematical Models and Computer Simulations
,
2004,
vol. 16, no. 6, pp. 86–92.
[2]
Ilyasova I.G.
Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo
Universiteta im. akademika S.P. Koroleva
—
Journal “Vestnik of the Samara
State Aerospace University”
, 2012, no. 4 (35), pp. 88–93.
[3]
Krylov A.V.
Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie —
Herald of the Bauman Moscow State Technical University. Series Mechanical
Engineering
, 2011, no. 1, pp. 106–111.
[4]
Yudintsev V.V.
Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal Polet —
Russian Scientific and Technical Journal Polet (Flight)
, 2012, no. 5, pp. 28–33.
[5]
Kuznetsova A.O.
Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo
universiteta im. akademika M.F. Reshetneva — Vestnik Sibirskogo gosudar-
stvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva
(Vestnik SibGAU)
, 2005, no. 3, pp. 135–138.
[6]
Panichkin V.I.
Izvestiya AN SSSR. MTT — Mechanics of Solids. A Journal of
the Russian Academy of Sciences
, 1992, no. 4, pp. 183–190.
[7]
Yudintsev V.V.
Dinamika sistem tverdykh tel
[Dynamics of systems of rigid
bodies]. Samara University Publ., 2008, 115 p.
[8]
Featherstone R.
Rigid Body Dynamics Algorithms
. Springer Science, Business
Media, LLC Publ., 2008, 272 p.
[9]
Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody
systems with changing structures for space applications.
Acta Astronautica
Journal,
Elsevier Publ., 2011. DOI: 10.1016/j.actaastro.2010.11.013