Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

А.Ю. Бушуев

10

Инженерный журнал: наука и инновации

# 2·2017

Mathematical model for backup large-area

solar battery disclosure system

©

А.Yu

. Bushuev

Bauman Moscow State Technical University, Moscow, 105005, Russia

To improve rope systems multilink solar battery disclosure liability, the article proposes

a backup disclosure system consisting of a lift mechanism (jack), driven by the electric

drive and a rope system synchronization. The mechanism's main feature is a variable ra-

tio depending on the first link steering angle. Rope synchronization system consists of

a roller set connected by cables in a certain way, and the two types of gear mechanisms

to ensure the required gear ratio. The article proposes the power mechanism schematic

diagram and the synchronization system kinematics. The study derives the transmission

dependence from the engine to the first link, gives a disclosure system mathematical

model. In order to determine the disclosure process basic characteristics, we use La-

grange equation of the second kind made up for a solar battery kinetic energy and link-

age simulation (hinged panels weight is attached), where we assume each link to be an

absolutely rigid body. To determine the connections and efforts in cables, we use the

equations d'Alembert. The study suggests an iterative method of accounting for rope syn-

chronization systems elastic deformation.

Keywords

: mathematical model, rope disclosure system, multilink design, solar battery,

deformation

REFERENCES

[1]

Bakunin D.V., Borzykh S.V., Ososov N.S, Schiblev Yu.N.

Matematicheskoe

modelirovanie — Mathematical Models and Computer Simulations

,

2004,

vol. 16, no. 6, pp. 86–92.

[2]

Ilyasova I.G.

Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo

Universiteta im. akademika S.P. Koroleva

Journal “Vestnik of the Samara

State Aerospace University”

, 2012, no. 4 (35), pp. 88–93.

[3]

Krylov A.V.

Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie —

Herald of the Bauman Moscow State Technical University. Series Mechanical

Engineering

, 2011, no. 1, pp. 106–111.

[4]

Yudintsev V.V.

Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal Polet —

Russian Scientific and Technical Journal Polet (Flight)

, 2012, no. 5, pp. 28–33.

[5]

Kuznetsova A.O.

Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo

universiteta im. akademika M.F. Reshetneva — Vestnik Sibirskogo gosudar-

stvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva

(Vestnik SibGAU)

, 2005, no. 3, pp. 135–138.

[6]

Panichkin V.I.

Izvestiya AN SSSR. MTT — Mechanics of Solids. A Journal of

the Russian Academy of Sciences

, 1992, no. 4, pp. 183–190.

[7]

Yudintsev V.V.

Dinamika sistem tverdykh tel

[Dynamics of systems of rigid

bodies]. Samara University Publ., 2008, 115 p.

[8]

Featherstone R.

Rigid Body Dynamics Algorithms

. Springer Science, Business

Media, LLC Publ., 2008, 272 p.

[9]

Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody

systems with changing structures for space applications.

Acta Astronautica

Journal,

Elsevier Publ., 2011. DOI: 10.1016/j.actaastro.2010.11.013