Алгоритм формирования уравнений динамики для механической системы с конечным числом степеней свободы на основе теоремы об изменении кинетической энергии - page 8

П.Г. Русанов
8
The algorithm for generating dynamics equations
for a mechanical system with a finite number of degrees
of freedom based on the theorem of change of kinetic energy
© P.G. Rusanov
Bauman Moscow State Technical University, Moscow, 105005, Russia
By the example of planar mechanisms with two degrees of freedom the article demon-
strates principles of organization of the algorithm to represent dynamics equations based
on the theorem of change of kinetic energy in differential form. The offered technology of
displaying mathematical model of a dynamic condition of mechanical system differs from
classical methods, including Lagrange equations of the second kind.
Keywords
: kinetic energy, algorithm to derive the equations, equations of dynamics, line-
ar combination of variables, independent variables.
REFERENCES
[1]
Velichenko V.V.
Matrichno-geometricheskie metody v mekhanike s prilozheni-
yami k zadacham robototekhniki
[Matrix-geometric methods in mechanics with
applications to problems of robotics]. Moscow, Nauka Publ., Head editorial
board of phys.-math. Literature, 1988, 280 p.
[2]
Wittenburg J.
Dynamics of Systems of Rigid Bodies
. B.G. Teubner, Stuttgart,
1977.
[3]
Eliseev S.V., Svinin M.M.
Matematicheskoe i programmnoe obespechenie v is-
sledovaniyakh manipulyatsionnykh sistem
[Mathematical and software in ma-
nipulation systems research]. Novosibirsk, Nauka Publ., Sibirian branch, 1992,
296 p.
[4]
Efimov G.B., Pogorelov D.Yu.
Nekotorye algoritmy avtomatizirovannogo sinte-
za uravneniy dvizheniya sistemy tverdykh tel
[Some algorithms for the automat-
ed synthesis of the equations of motion of solids]. Keldysh Institute of Applied
Mathematics of the Russian Academy of Sciences. Preprint. Moscow, 1993,
no. 84.
[5]
Lilov L.
Uspekhi mekhaniki
Advances in Mechanics
, 1983, vol. 6, no. 1–2,
pp. 46—90.
[6]
Popov E.P., Vereschagin A.F., Zenkevich S.L.
Manipulyatsionnye roboty.
Dinamika i algoritmy
[Manipulation robots. Dynamics and Algorithms]. Mos-
cow, Nauka Publ., 1978, 378 p.
[7]
Routh E.J.
Dynamics of a system of rigid bodies
. In two parts. Dover Publ., Inc.,
New York.
[8]
Fu K., Gonzalez R., Lee C.
Robotics: Control, sensing, vision and intelligence
,
McGraw–Hill, 1987.
[9]
Shahinpoor M.
A Robot Engineering Textbook
. Harper & Raw Publ., 1987.
Rusanov P.G.,
Ph.D., Assoc. Professor of the Department of Theoretical Mechanics at
Bauman Moscow State Technical University. e-mail:
1,2,3,4,5,6,7 8
Powered by FlippingBook