Моделирование устойчивости сжатого и скрученного стержня - page 10

В.М. Дубровин, Т.А. Бутина
10
Modelling the stability of compressed and twisted rod
© V.M. Dubrovin, T.A. Butina
Bauman Moscow State Technical University, Moscow, 105005, Russia
To calculate the stability of a rod under simultaneous effect of axial compressive force
and torque we offer an approximate method.
It is assumed that the main rod bending
rigidity differs slightly, and the rod torsion is very small. We considered
rods with
clamped ends,
with pivot bearings, and rod in the form of a compressed and twisted con-
sole.
For all cases we received diagrams of dependence of the rod stability parameter for
different values of the ratio of its principal bending rigidities.
Keywords:
rod, compression, torsion, stability, flexural rigidity, crippling load, torque.
REFERENCES
[1] Feodosyev V.I.
Izbrannye zadachi i voprosy po soprotivleniyu materialov
[
Selected problems and questions on resistance of materials
]. Moscow, Nauka
Publ., 1973, 400 p.
[2] Ponamarev S.D., ed
. Raschety na prochnost’ v mashinostroenii
[Strength anal-
ysis in engineering]. Moscow, Mashgiz Publ., 1959, vol. 3, 861 p.
[3] Shashkov I.E.
Prikladnaya mechanika — Applied Mechanics
, 1976, vol. 12, no.
1, pp. 71–76.
[4] Shashkov I.E.
Prikladnaya mechanika — Applied Mechanics
, 1978, vol. XIV,
no. 2, pp. 87–94.
[5] Zhilin P.A.
Aktualnye problemy mekhaniki. Sbornik statey
[Actual Problems in
Mechanics.
Coll. papers
]. St.-Petersburg, Institute of Problems of Mechanical
Engineering RAS, 2006, 306 p.
[6] Rabotnov Yu.N.
Problemy mekhaniki deformiruemogo tela
[Problems of solid
mechanics]. Moscow, Nauka Publ., 1991, 194 p.
[7] Dimitrienko Yu.I.
Mekhanika sploshnoy sredy. Tom 4. Osnovy mekhaniki tver-
dogo tela
[Continuum Mechanics. Vol. 4. Fundamentals of solid mechanics].
Moscow, BMSTU Publ., 2013, 624 p.
[8] Dimitrienko Yu.I.
Mekhanika sploshnoy sredy. Tom 2. Universalnye zakony
mekhaniki i elektrodinamiki sploshnoy sredy
[Continuum Me-chanics. Vol. 2.
Universal laws of mechanics and electrodynamics of con-tinuous media]. Mos-
cow, BMSTU Publ., 2011, 560 p.
[9] Frolov K.V.
Izbrannye Trudy
[Selected Works]. Moscow, Nauka Publ., 2007,
526 p.
[10] Pikovsky A., Rozenblyum M., Kurts Yu.
Sinkhronizatsiya: Fun-damentalnoe
nelineynoe yavlenie
[Synchronization: The fundamental non-linear phenome-
non]. Moscow, Tekhnosfera Publ., 2003, 496 p.
[11] Volmir A.S.
Ustoichivost’ deformiruemykh system
[Stability of deformable sys-
tems]. Moscow, Nauka Publ., 1967, 987 p.
[12] Butina T.A., Dubrovin V.M.
Inzhenernyi zhurnal: nauka i innovatsii — Engi-
neering Journal: Science and Innovations
, 2012, iss. 2(2). Available at:
Dubrovin V.M.
(b. 1934) graduated from the Faculty of Mathematics and Mechanics of
the Saratov State University in 1958. Ph.D., Assoc. Pro-fessor of the Computational
Mathematics and Mathematical Physics and of the Higher Mathematics Departments of
Bauman Moscow State Tech-nical University. Research interests: dynamics, strength and
stability of deformable systems; creep of structural materials. He is the author of five
inventions. e-mail: dubrovinvm1934@ mail.ru
1,2,3,4,5,6,7,8,9 11
Powered by FlippingBook