Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

Способ восстановления курсовой ориентации космического аппарата…

Инженерный журнал: наука и инновации

# 5·2017 9

Method for restoring the heading orientation of a spacecraft

using the orbital gyrocompass

©

I.N. Abezyaev, A.V. Andreyanenkova, P.E. Velichko,

A.I. Potselovkin, D.V. Fokin

JSC MIC NPO Mashinostroyenia, Reutov town, Moscow region, 143966, Russia

At present, the development of algorithms for controlling the angular orientation and

stabilization of the orbital spacecraft is one of the most relevant and dynamically devel-

oping areas in the field of astronautics and control theory. A special role in the algorithm

for reducing the bound coordinate system to the orbital coordinate system is the stage of

the heading motion. The current orientation systems, including the orbital gyrocompass,

do not have the proper quality of transient processes that would satisfy the requirements

of customers. Such systems require solving the problem of reducing the time for con-

structing OCS in the course channel and improving the quality of the transitional process

as a whole. This paper analyzes the "classical" orbital gyrocompassing (OGC) method

and shows its shortcomings. A new method to restore heading orientation using OGC is

proposed. It significantly reduces the time of transient processes and improves their qual-

ity. The graphs reflecting the behavior of spacecraft in the process of restoring the head-

ing orientation using the proposed method are presented.

Keywords:

restoring the heading orientation, orbital gyrocompass, orbital gyrocompass-

ing, spacecraft motion control system, angular motion of a spacecraft, spacecraft orien-

tation, spacecraft stabilization, program course turn

REFERENCES

[1]

Alekseev K.B., Bebenin G.G.

Upravlenie kosmicheskim letatelnym apparatom

[Control of spacecraft]. 2nd ed. Moscow, Mashinostroenie Publ., 1974, 343 p.

[2]

Besekerskiy V.A., Ivanov V.A., Samotokin B.B.

Orbitalnoe girokompasirovanie

[Orbital gyrocompassing]. St. Petersburg, Politekhnika Publ., 1993, 250 p.

[3]

Raushenbakh B.V., Tokar E.N

. Upravlenie orientatsiey kosmicheskikh apparatov

[Control of space vehicle orientation]. Moscow, Nauka Publ., 1974, 600 p.

[4]

Seleznev V.P.

Navigatsionnye ustroystva

[Navigation devices]. Moscow,

Mashinostroenie Publ., 1974, 600 p.

[5]

Bowers J.R., Rodden J.J., Scott E.D., Debra D.B. Orbital Gyrocompassing

Heading Reference.

AIAA Journal of Spacecraft and Rockets

, 1968, vol. 5, no. 8,

903 p.

[6]

Boyarchuk K.A., Vilenskiy V.V., Grishin

V.Yu

., Eremeev P.M., Zaytsev S.E.,

Zimin S.N., Morozova L.M., Nekhamkin L.I., Ryabikov V.S., Salikhov R.S.

Sistema orientatsii i stabilizatsii KA “Kondor-E” [The system of orientation and

stabilization of the "Condor-E" spacecraft].

Trudy sektsii 22 imeni akademika

V.N. Chelomeya XXXVIII Akademicheskikh chteniy po kosmonavtike: Raketnye

kompleksy i raketno-kosmicheskie sistemy – proektirovanie, eksperimentalnaya

otrabotka, letnye ispytaniya, ekspluatatsiya

[Proceedings of the section 22

named after academician V.N. Chelomey of XXXVIII Scientific conference on

cosmonautics: Missile systems and rocket and space systems – design,

experimental development, flight testing, operation]. JSC MIC NPO

Mashinostroyenia. Reutov town, 2014, pp. 408–424.