А.Ю. Бушуев
10
Инженерный журнал: наука и инновации
# 1·2017
Rope system designing for multi-link solar batteries
disclosure under uncertainty
©
А.Yu. Bushuev
Bauman Moscow State Technical University, Moscow, 105005, Russia
Currently, not enough attention is paid to the flexible solar batteries disclosure systems.
This paper deals with mathematical methods for designing a rope disclosure system. Un-
der flexible system for disclosing the multi-link solar battery structure we mean such a
construction that adopts all the restrictions at the performance stage, provided that the
uncertain parameters may take any value from the uncertainty region. Uncertainty is the
moment of resistance between the multi-link design links defined by friction in the joints
and the harness resistance. The purpose of the system construction is to provide a con-
sistent units fixation from the last link to the first. Basing on
the proposed mathematical
model we calculated additional angles rotation of the units, caused by the elastic ropes
synchronization system
. Due to impossibility of controlling the resistance moments the
operating forces in the cables can be varied within certain limits. The research task is to
determine the pretension cables synchronization system for ensuring the disclosure sys-
tem performance conservation. To solve the problem, we use a method of approximating
the outside.
Keywords:
mathematical model, rope disclosure system, multi-link design, solar battery,
uncertainty, strain, optimization
REFERENCES
[1]
Bakunin D.V., Borzykh S.V., Ososov N.S., Schiblev Yu.N.
Matematicheskoe
modelirovanie — Mathematical Models and Computer Simulations
,
2004,
vol. 16, no. 6, pp. 86–92.
[2]
Kuznetsova A.O.
Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo
universiteta im. akademika M.F. Reshetneva — Vestnik Sibirskogo gosudar-
stvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva
(Vestnik SibGAU)
, 2005, no. 3, pp. 135–138.
[3]
Ilyasova I.G.
Vestnik Samarskogo Gosudarstvennogo Aehrokosmicheskogo
Universiteta im. akademika S.P. Koroleva — Journal “Vestnik of the Samara
State Aerospace University”
, 2012, no. 4 (35), pp. 88–93.
[4]
Krylov A.V.
Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Her-
ald of the Bauman Moscow State Technical University. Series Mechanical
Engineering
, 2011, no. 1, pp. 106–111.
[5]
YudintsevV.V.
Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal Polet —
Russian scientific and technical journal Polet (Flight)
, 2012, no. 5, pp. 28–33.
[6]
Panichkin V.I.
Izvestiya AN SSSR. MTT — Mechanics of Solids
.
A Journal of
the Russian Academy of Sciences
, 1992, no. 4, pp. 183–190.
[7]
Yudintsev V.V.
Dinamika sistem tverdykh tel
[Dynamics of systems of solids].
Samara University Publ
.
, 2008, 115 p.
[8]
Featherstone R.
Rigid Body Dynamics Algorithms
. Springer Science, Business
Media, LLC Publ., 2008, 272 p.
[9]
Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody
systems with changing structures for space applications.
Acta Astronautica
Journal
, Elsevier Publ., 2011. DOI: 10.1016/j.actaastro.2010.11.013
[10]
Mengali G., Salvetti A., Specht B.
Multibody Analysis of Solar Array Deploy-
ment using Flexible Bodies.
Universita di Pisa, Facoltà di Ingegneria Corso di
Laurea in IngegneriaAerospaziale Publ., 2007.