Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

А.Ю. Бушуев

10

Инженерный журнал: наука и инновации

# 1·2017

Rope system designing for multi-link solar batteries

disclosure under uncertainty

©

А.Yu

. Bushuev

Bauman Moscow State Technical University, Moscow, 105005, Russia

Currently, not enough attention is paid to the flexible solar batteries disclosure systems.

This paper deals with mathematical methods for designing a rope disclosure system. Un-

der flexible system for disclosing the multi-link solar battery structure we mean such a

construction that adopts all the restrictions at the performance stage, provided that the

uncertain parameters may take any value from the uncertainty region. Uncertainty is the

moment of resistance between the multi-link design links defined by friction in the joints

and the harness resistance. The purpose of the system construction is to provide a con-

sistent units fixation from the last link to the first. Basing on

the proposed mathematical

model we calculated additional angles rotation of the units, caused by the elastic ropes

synchronization system

. Due to impossibility of controlling the resistance moments the

operating forces in the cables can be varied within certain limits. The research task is to

determine the pretension cables synchronization system for ensuring the disclosure sys-

tem performance conservation. To solve the problem, we use a method of approximating

the outside.

Keywords:

mathematical model, rope disclosure system, multi-link design, solar battery,

uncertainty, strain, optimization

REFERENCES

[1]

Bakunin D.V., Borzykh S.V., Ososov N.S., Schiblev Yu.N.

Matematicheskoe

modelirovanie — Mathematical Models and Computer Simulations

,

2004,

vol. 16, no. 6, pp. 86–92.

[2]

Kuznetsova A.O.

Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo

universiteta im. akademika M.F. Reshetneva — Vestnik Sibirskogo gosudar-

stvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva

(Vestnik SibGAU)

, 2005, no. 3, pp. 135–138.

[3]

Ilyasova I.G.

Vestnik Samarskogo Gosudarstvennogo Aehrokosmicheskogo

Universiteta im. akademika S.P. Koroleva — Journal “Vestnik of the Samara

State Aerospace University”

, 2012, no. 4 (35), pp. 88–93.

[4]

Krylov A.V.

Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Her-

ald of the Bauman Moscow State Technical University. Series Mechanical

Engineering

, 2011, no. 1, pp. 106–111.

[5]

YudintsevV.V.

Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal Polet —

Russian scientific and technical journal Polet (Flight)

, 2012, no. 5, pp. 28–33.

[6]

Panichkin V.I.

Izvestiya AN SSSR. MTT — Mechanics of Solids

.

A Journal of

the Russian Academy of Sciences

, 1992, no. 4, pp. 183–190.

[7]

Yudintsev V.V.

Dinamika sistem tverdykh tel

[Dynamics of systems of solids].

Samara University Publ

.

, 2008, 115 p.

[8]

Featherstone R.

Rigid Body Dynamics Algorithms

. Springer Science, Business

Media, LLC Publ., 2008, 272 p.

[9]

Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody

systems with changing structures for space applications.

Acta Astronautica

Journal

, Elsevier Publ., 2011. DOI: 10.1016/j.actaastro.2010.11.013

[10]

Mengali G., Salvetti A., Specht B.

Multibody Analysis of Solar Array Deploy-

ment using Flexible Bodies.

Universita di Pisa, Facoltà di Ingegneria Corso di

Laurea in IngegneriaAerospaziale Publ., 2007.