Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

Оптимизация электроразрядного датчика низкого давления

Инженерный журнал: наука и инновации

# 5·2016 13

Optimization of a low pressure sputter-ion sensor

©

A.I. Zhakin, A.A. Gromov, A.A. Lutsenko, V.A. Pikkiev

South-Western State University (SWSU), Kursk, 305040, Russia

The article discusses theoretical and experimental studies of low-pressure sputter-ion

sensors in nitrogen-oxygen plasma.

Sensor is an electrode system in the form of a cylin-

drical capacitor with crossed electric and magnetic fields.

The magnetic field allows for

maintaining the sustainable development of the electric discharge.

There suggested the

system of plasma chemical equations upon which expression for the dependence of the

current from the applied voltage and the sensor pressure was obtained. The agreement of

the results of theoretical and experimental studies is satisfactory. Based on these results

recommendations for optimizing the sensor are provided - the sensor size is decreased

and the accuracy of the pressure measurements is increased.

Keywords:

sensor, pressure, discharge, electric field, magnetic field, plasma chemical

reactions, current, volt-ampere characteristic.

REFERENCES

[1]

Jamal R.K., Aadim K.A., Al-zaidi Q.G., Taaban I.N. Hydrogen Gas Sensors

Based on Electrostatically Spray Deposited Nickel Oxide Thin Film

Structures.

Photonic Sensors

, June 2015, pp. 235–240. DOI: 10.1007/s13320-015-0253-0

[2]

López-Herrera J.M., Barrero A., Boucard A.

An Experimental Study of the

Electrospraying of Water in Air at Atmospheric Pressure.

Journal of the

American Society for Mass Spectrometry

, March 2004.

[3]

Zhu X.F., Thiam S., Valle B.C., Warner I.M. A Colloidal Graphite-Coated

Emitter for Sheathless Capillary Electrophoresis. Nanoelectrospray Ionization

Mass Spectrometry.

Anal. Chem.

2002

,

74 (20), рр. 5405–5409.

[4]

Grosu F.P., Bologa A.M., Bologa M.K., Motorin O.V.

Surface Engineering and

Applied Electrochemistry

, 2015, vol. 51, no. 5, pp. 456–461.

[5]

Penchko E.A., Kostin L.A.

Ionizatsionnyy vakuummetr

[The Ionization Vacuum

Gauge]. Certificate of Authorship, SU, no. 1472777. Priority on August 11

,

1987, published April 15, 1989, Bulletin no. 14.

[6]

Zhakin A.I., Lutsenko A.A.

Surface Engineering and Applied Electrochemistry

,

2012, vol. 48, no. 2, pp. 156–160.

[7]

Zhakin A.I., Bogomazov

R.Yu

.

Surface Engineering and Applied

Electrochemistry

, 2012, vol. 48, no. 3, pp. 264–267.

[8]

Mnatsakanyan

A.Kh

., Naydis G.V. Protsessy obrazovaniya i gibeli chastits v

azotno-kislorodnoy plazme [The Processes of Formation and Destruction of Par-

ticles in the Nitrogen-Oxygen Plasma].

Khimiya plazmy. Sbornik statey

[Plasma

Chemistry. Collected articles]. Smirnov B.M., ed. Vol. 14. Moscow, Energoizdat

Publ., 1987, 296 p.

[9]

Mnatsakanyan

A.Kh

., Naydis G.V., Solozubov Yu.M.

Teplofizika vysokikh tem-

peratur —Thermophysics of High Temperatures,

vol. 24, no. 6, 1986, pp. 1060–

1066.

[10]

McEwan M.J., Phillips L.F.

Chemistry of the Atmosphere

. Edward Arnold Ltd.,

London, 1975 [In Russ.: Mak-Iven M., Filips Kh. Khimiya atmosfery. Moscow,

Mir Publ., 1978].