Table of Contents Table of Contents
Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

Численно-аналитическое построение семейства периодических движений…

Инженерный журнал: наука и инновации

# 5·2016 9

Numerical analysis of periodic motions of a dynamically

symmetric satellite originated from its hyperboloidal

precession

© E.A. Sukhov, B.S.Bardin

Moscow Aviation Institute (MAI), Moscow, 125993, Russia

The article presents families of periodic satellite movements originated from its hyperbo-

loidal precession as a special case of a dynamically symmetric satellite — solid body

motion about the center of mass in a circular orbit

.

The parameters of the family are total

mechanical energy deviation from its value on the hyperboloidal precession and the ratio

of the polar and equatorial moments of inertia of the satellite (inertial parameter).When

energy values are close to the value in the hyperboloidal precession, periodic motions

are obtained by Lyapunov technique as convergent series. For arbitrary values of energy

for obtaining periodic motions numerical parameter continuation method for solution

families proposed by A.G. Sokolskiy and S.R. Karimov was applied. The research tech-

niques are described briefly, recommendations on the selecting the parameter increments

are set out, the results of constructing a family of periodic motions originated from satel-

lite hyperboloidal precession are presented.

Keywords:

hamiltonian mechanics, numerical methods, periodic motions, symmetric sat-

ellite, hyperboloidal precession.

REFERENCES

[1]

Beletskiy V.V.

Dvizhenie sputnika otnocitelno tsentra mass v gravitatsionnom

pole

[The Motion of the Satellite about the Center of Mass in a Gravitational

Field]. Moscow, MGU Publ., 1975, 308 p.

[2]

Markeev A.P.

Lineynye gamiltonovy sistemy i nekotorye zadachi ob

ustoychivosti dvizheniya sputnika otnositelno tsentra mass

[Linear Hamiltonian

Systems and Some Problems of Stability of Satellite Motion about the Center of

Mass]. Moscow, Izhevsk, SRC Regular and Chaotic Dynamics, Institute of

Computer Sciences Publ., 2009, 369 p.

[3]

Malkin I.G.

Nekotorye zadachi teorii nelineynykh kolebaniy

[Some Problems in

the Theory of Nonlinear Oscillations]. Moscow, State Publishing House of

Technical and Theoretical Literature, 1956, 491 p.

[4]

Deprit A., Henrard J. Natural Families of Periodic Orbits.

The Astronomical

Journal

, 1967, vol. 72, no. 2, pp. 158–172.

[5]

Karimov S.P., Sokolskiy A.G.

Metod prodolzheniya po parametram

estestvennykh semeystv periodicheskikh dvizheniy gamiltonovykh system

[Parameter Continuation Method for Natural Families of Periodic Motions of

Hamiltonian Systems]. Preprint, Institute of Theoretical Astronomy of the USSR

Academy of Sciences Publ., 1990, no. 9, 32 p.

[6]

Winter A.

The Analytical Foundations of Celestial Mechanics

, Princeton,

N. J., Princeton Univ. Press, 1941. [In Russ.: Winter A. Analyticheskie osnovy

nebesnoy mekhaniki, Moscow, Nauka Publ., 1967, 524 p.

[7]

Duboshin G.N.

Spravochnoe rukovodstvo po nebesnoy mekhanire i astro-

dinamike

[Reference Guide on Celestial Mechanics and Astrodynamics].

Moscow, Nauka Publ., 1976, 864 p.