Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

Исследование точностных характеристик комплекса алгоритмов…

Инженерный журнал: наука и инновации

# 3

2016 11

Investigating precision capabilities of a system of termi-

nal guidance algorithms for prospective manned spacecraft

during final descent phase in the Earth’s atmosphere

© S.I. Kudryavtsev

Federal State Unitary Enterprise TsNIIMash, Korolev, 141070, Russia

The article deals with the problem of ensuring high-precision landing during gliding

reentry of a prospective manned spacecraft reentry capsule. The importance of this prob-

lem stems from the necessity of transferring landing sites from the territory of Kazakh-

stan to the territory of Russia. To solve this problem, we intend to use a combined reentry

guidance system performing precise terminal guidance based on navigation data from a

satellite system during the final phase of capsule descent. A brief description of the sys-

tem of terminal guidance algorithms designed is given. Issues of research methodology

for investigations performed using a modified software package for reentry flight dynam-

ics support of the “Soyuz TMA-M”-type spacecraft are considered. Results of statistical

simulation of a combined guidance system in operation, including simulation of both au-

tonomous reentry control before radio reacquisition and final terminal guidance, are

presented. The study shows that the error of delivering the capsule to the target point

does not exceed the desired value of 1 km.

Keywords:

reentry capsule, precision landing, combined guidance system, system of

terminal guidance algorithms

REFERENCES

[1]

Okhotsimskiy D.E., Golubev Yu.F., Sikharulidze Yu.G.

Algoritmy upravleniya

kosmicheskim apparatom pri vkhode v atmosferu

[Guidance algorithms for

spacecraft during atmospheric reentry]. Moscow, Nauka Publ., 1975.

[2]

Sikharulidze Yu.G.

Ballistika letatelnykh apparatov

[Aircraft ballistics].

Moscow, Nauka Publ., 1982.

[3]

Yaroshevskiy V.A.

Vkhod v atmosferu kosmicheskikh letatelnykh apparatov

[Atmospheric reentry of spacecraft]. Moscow, Nauka Publ., 1988.

[4]

Andreevskiy V.V.

Dinamika spuska kosmicheskikh apparatov na Zemlyu

[Dynamics of spacecraft deorbiting onto the Earth]. Moscow, Mashinostroenie

Publ., 1970.

[5]

Kudryavtsev S.I.

Kosmonavtika i raketostroenie – Cosmonautics and Rocket

Engineering

, 2015, no. 1 (80), pp. 5–13.

[6]

Berenov N.K., Branets V.N., Evdokimov S.N., Klimanov S.I., Komarova L.I.,

Mikrin E.A., Ryzhkov V.S., Samitov R.M.

Giroskopiya i navigatsiya –

Gyroscopes and Navigation

, 2004, no. 3 (46), pp. 5–13.

[7]

Bezmenov A.E., Aleksashenko V.A.

Radiofizicheskie i gazodinamicheskie

problemy prokhozhdeniya atmosfery

[Radiophysics and gas dynamics issues of

atmospheric transit]. Moscow, Mashinostroenie Publ., 1982.

[8]

Ivanov N.M., Kudryavtsev S.I.

Kosmicheskie issledovaniya – Space Research

,

1988, vol. XXVI, no. 4.

[9]

Kudryavtsev S.I. Osobennosti tochnogo navedeniya pilotiruemykh

kosmicheskikh apparatov na konechnom uchastke ikh spuska [Specifics of

precise guidance of manned spacecraft during the final descent phase].

Sb. RKT

[Rocket and Space Technology Miscellany], TsNIImash Publ., 1990, ser. IX,

no. 1. Available at:

http://tsniimash.ru/publications