Устойчивость цилиндрических оболочек в жесткой среде
Инженерный журнал: наука и инновации
# 9·2017 17
Buckling of cylindrical shells in rigid medium
© A.V. Egorov
National Institute of Aviation Technologies (NIAT), Moscow, 117587, Russia
The local buckling of metal liners is a crucial practical task when manufacturing and ex-
ploiting metal-composite pressure vessels. This paper considers deformation of a thin-
walled cylindrical shell (liner) rigidly confined by cylindrical cage under external pres-
sure loading. The primary focus is on accounting initial imperfections in terms of techno-
logical deviations: local notches and ridges on the liner and container, which, in their
turn, have regular geometry. The present investigation is numerical and employs a three-
dimensional model, where the liner and the container are simulated with volumetric finite
elements. Besides, this model allows taking into account the girth welds in the liner. The
study analyses the mechanical behavior of the liner according to the elastic and elastic-
plastic patterns. We consider two types of loading of the liner: heating the liner in the
cold cage and pressure moulding of the liner by the cooled container without any thermal
contact. The numerical results have shown the essential dependence of the maximum crit-
ical pressure on the liner on the value of the technological deviations.
Keywords:
stability of cylindrical shells, shell structures, local buckling, local internal
deformation, plastic pressure, initial design imperfections, metal-composite vessels, high-
pressure vessels, variable liner thickness, critical load, finite element simulation
REFERENCES
[1]
Grigolyuk E.I., Kabanov V.V.
Ustoychivost obolochek
[The shell stability].
Moscow, Nauka Publ., 1978, 360 p.
[2]
Feodosev V.I.
Izbrannye zadachi i voprosy po soprotivleniyu materialov
[The
selected tasks and questions regarding the strength of materials]. Moscow, Nau-
ka Publ., 1973, 400 p.
[3]
Glock D.
Der Stahlbau
, 1977, vol. 46, no. 7, pp. 212–217.
[4]
Brush D.O., Almroth B.O.
Buckling of Bars, Plates, and Shells
. New York,
McGraw-Hill, 1975.
[5]
El-Sawy K., Moore I.D.
Journal of Structural Engineering
, 1998, no. 124 (11),
pp. 1350–1357.
[6]
Montel R.
La Houille Blanche
, 1960, no. 15 (5), pp. 560–568.
[7]
Vasilikis D., Karamanos S.A.
Applied Mechanics Reviews
, 2014, vol. 66, Article
Number 010801.
[8]
El-Sawy K.
Tunnelling and Underground Space Technology
, 2013, no. 33,
pp. 98–110. DOI 10.1016/j.tust.2012.09.004
[9]
Estrada C.F., Godoy L.A., Flores F.G.
Thin-walled structures
, 2012, no. 61,
pp. 188–195. Available at:
http://dx.doi.org/10.1016/j.tws.2012.05.010(аccessed
April 28, 2017).
[10]
Vasilikis D., Karamanos S.A.
Journal of Pressure Vessel Technology
, 2010,
vol. 133, no. 1, pp. 331–341.
[11]
El-Sawy K.
Journal of Structural Engineering
, 2002, 128(7), pp. 934–941.
[12]
Vasiliev V.V.
Composite pressure vessels — analysis, design and manufactur-
ing
. Blacksburg, Bull Ridge Publ., 2009, 704 p.
[13]
Vasilev V.V., Moroz N.G.
Kompozitnye ballony davleniya. Proektirovanie,
raschet, izgotovlenie i ispytaniya: spravochnoe posobie
[Composite pressure