Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

А.А. Баранов, М.О. Каратунов

10

Инженерный журнал: наука и инновации

# 7·2017

Safety policy for the four-impulse rendezvous maneuver

on the near-circular orbits

© A.A. Baranov

1,2

, M.O. Karatunov

2,3

1

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow,

125047, Russia

2

Bauman Moscow State Technical University, Moscow, 105005, Russia

3

Astronomical Research Center Ltd., Moscow, 111123, Russia

The article touches upon the problem of safety measures for the orbital rendezvous ma-

neuver with regard to the spacecraft deviation from the dangerous approach to the lumps

of space debris. The distinctive feature is an inability to perform an additional deviation

maneuver at the phasing stage. We suggest a technique for changing the four-impulse

rendezvous maneuver on the near-circular orbits, which allows avoiding the collision on

the phasing orbit without extra power consumption. The technique is based on the geo-

metrical representation of the maneuver in the plane of the eccentricity vector projection

and involves changing the maneuver performance with account of the forbidden region.

We present an algorithm for searching this region. The article analyses the dependence

of the forbidden region shape, dimensions and location on the dangerous approach mag-

nitude.

Keywords:

spacecraft, space debris, space objects catalogue, dangerous approach, devi-

ation from the dangerous approach, rendezvous maneuver, phasing orbit, four-impulse

maneuver, maneuvering plan

REFERENCES

[1]

Braun V., Flohrer T., Krag H., Lemmens S., BastidaVirgili B., Funke Q.

CEAS

Space Journal

, 2016, vol. 8, iss. 3, pp. 177–189. DOI 10.1007/s12567-016-0119-3

[2]

Nazarenko A.I.

Acta Astronautica

, 2014, vol. 100, pp. 47–56. Available at:

http://dx.doi.org/10.1016/j.actaastro.2014.02.023

[3]

Kebschull C., Scheidemann P., Hesselbach S., Radtke J., Braun V., Krag H.,

Stoll E.

Advances in Space Research

, 2016, vol. 59, no. 1, pp. 166–180.

DOI 10.1016/j.asr.2016.08.005

[4]

Melnikov Ye.K.

Kosmonavtika i raketostroyeniye — Cosmonautics and Rocket

Engineering

, 2004, no. 4 (37), pp. 176–186.

[5]

Baranov A.A., Karatunov M.O.

Inzhenernyy zhurnal: nauka i innovatsii —

Engineering Journal: Science and Innovation,

2016, iss. 4. Available at:

http://engjournal.ru/articles/1485/1485.pdf

[6]

Kondrashin M.A.

Metod analiza i obrabotki trayektornoy informatsii dlya

vyyavleniya kosmicheskikh obyektov riska pri operativnom upravlenii

kosmicheskimi apparatami.

Avtoref. diss. kand. tekhn. nauk. [Method of

trajectory information analysis and processing for identifying the risk space

objects in the process of spacecraft operating control. Author’s abstract of Cand.

Sc. (Eng.) Diss.]. Moscow, 2011, 22 p.

[7]

Baranov A.A., Terekhova E.O.

Kosmicheskiye issledovaniya — Cosmic

Research

, 1995, vol. 33, no. 4, pp. 420–425.

[8]

Baranov A.A.

Manevrirovaniye kosmicheskikh apparatov v okrestnosti krugovoy or-

bity

[Spacecraft maneuvering near the circular orbit]. Moscow, Sputnik+ Publ.,

2016, 512 p.