Я.А. Долгов, А.А. Зюзин, А.В. Финошин, Ю.И. Мышляев
8
Swing-up control of the cart-pole system with drive motor
by velocity bi-gradient method
© Ya.A. Dolgov, A.A. Zuzin, A.V. Finoshin, Yu.I. Myshlyaev
Kaluga Branch of Bauman Moscow State Technical University, Kaluga, 248000, Russia
The article considers the problem of swing-up control of the cart-pole with drive motor.
A cart-pole is a mechanical system consisting of a pendulum attached to a cart that rolls
freely on a flat surface. The velocity bi-gradient method is chosen to design the control
algorithmic synthesis. As the control system consists of two subsystems and the control
objective depends only on the output subsystem phase variables there is a good reason to
consider the first and the third stages of the velocity bi-gradient method. Control of me-
chanical subsystem is based on the energy approach with partial feedback linearization
and energy shaping. Energy approach has proved to be useful in the task of stabilizing
the unstable equilibrium position of the pendulum systems and swing-up control. The
design procedure and simulation results confirming the achievement of the specified con-
trol objective are presented.
Keywords:
partial feedback linearization, energy shaping, velocity bi-gradient method
REFERENCES
[1]
Miroshnik I.V., Nikiforov V.O., Fradkov A.L.
Nelineynoe i adaptivnoe uprav-
lenie slozhnymi dinamicheskimi sistemami
[Nonlinear and Adaptive Control of
Complex Dynamic Systems]. St. Petersburg, Nauka Publ., 2000, 548 p.
[2]
Fradkov A.L.
Kiberneticheskaya fizika: printsipy i primery
[Cybernetic Phys-
ics: Principles and Examples]. St. Petersburg, Nauka Publ., 2003, 208 p.
[3]
Myshlyaev Yu.I., Finoshin A.V.
Algoritmy upravleniya gamiltonovymi siste-
mami v usloviyakh parametricheskoy neopredelennosti
[Control Algorithms of
Hamiltonian Systems with Parametric Uncertainty]. Available at:
http://technomag.bmstu.ru/doc/282904.html(accessed 10.10.2014).
[4]
Spong M.W. Energy Based Control of a Class of Underactuated Mechanical
Systems.
IFAC World Congress
, 1996, pp. 431–435. Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.9401(accessed
10.10.2014).
[5]
Andrievskiy B.R., Guzenko P.Yu., Fradkov A.L.
Avtomatika i telemekhanika —
Automation and Remote Control
, 1996, no. 4, pp. 4–17. Available at:
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=3173&option_lang=rus (accessed 10.10.2014).
[6]
Peters S.C., Bobrow J.E., Iagnemma K. Stabilizing a vehicle near rollover: An
analogy to cart-pole stabilization.
Robotics and Automation
(ICRA),
IEEE In-
ternational Conference, Institute of Electrical and Electronics Engineers,
2010. Available at:
http://ieeexplore.ieee.org/xpl/articleDetails. jsp? arnumber
=5509367 (accessed 10.10.2014).
[7]
Myshlyaev Yu.I.,
Skhema biskorostnogo gradienta
[Scheme of Bi-Velocity
Gradient].
Proceedings of the International Technical Conference “Instrument
Engineering – 2002”
, Vinnitsa – Alushta, 2002, pp. 180–184.