Семейство гибридных алгоритмов оптимизации и диагностирования гидромеханических систем - page 8

В.Д. Сулимов, П.М. Шкапов
8
[15]
Schettino C.F.M., Gouvêa J.P., Medeiros N. Analyses of spacer grids compres-
sion strength and fuel assemblies structural behavior.
Nuclear Engineering and
Design
, 2013, vol. 260, pp. 93–103.
[16] Donida F., Casella F., Ferretti G. Model order reduction for object-oriented
models: a control systems perspective.
Mathematical and Computer Modelling
of Dynamical Systems
, 2010, vol. 16, no. 3, pp. 269–284.
[17]
Leblond C., Allery C., Inard C. An optimal projection method for the reduced-
order modeling of incompressible flows.
Computational Methods in Applied
Mechanics and Engineering
, 2011, vol. 200, no. 33–36, pp. 2507–2527.
[18]
Hou G., Wang J., Layton A. Numerical methods for fluid-structure interaction —
a review.
Communications in Computational Physics
, 2012, vol. 12, no. 2,
pp. 337–377.
[19]
Pochyly F., Malenovsky E., Pohanka L. New approach for solving fluid-
structure interaction eigenvalue problem by modal analysis and the calculation
of steady-state or unsteady responses.
Journal of Fluids and Structures
, 2013,
vol. 37, pp. 171–184.
[20] Xu M.-R., Xu S.-P., Guo H.-Y. Determination of natural frequencies of fluid-
conveying pipes using homotopy perturbation method.
Computers and Mathe-
matics with Applications
, 2010, vol. 60, no. 3, pp. 520–527.
[21] Chang T.-P. On the natural frequency of transversely isotropic magneto-
electro-elastic plates in contact with fluid.
Applied Mathematical Modelling
,
2013, vol. 37, no. 4, pp. 2503–2515.
[22] Bai Z.-J. Constructing of physical parameters of a damped vibrating system
from eigendata.
Linear Algebra and its Applications
, 2008, vol. 428, no. 2–3,
pp. 625–656.
[23] Gomes H.M., Silva N.R.S. Some comparisons for damage detection on struc-
tures using genetic algorithms and modal sensitivity method.
Applied Mathe-
matical Modelling
, 2008, vol. 32, no. 11, pp. 2216–2232.
[24] Kang F., Li J.-J., Xu Q. Damage detection based on improved particle swarm
optimization using vibration data.
Applied Soft Computing
, 2012, vol. 12, no. 8,
pp. 2329–2335.
[25]
Li L., Hu Y., Wang X., Ling L. Eigensensitivity analysis of damped systems
with distinct and repeated eigenvalues
. Finite Elements in Analysis and Design
,
2013, vol. 72, pp. 21–34.
[26] Christafakis A., Alexopoulos J., Tsangaris S. Modelling of two-phase flows in
ducts.
Applied Mathematical Modelling
, 2009, vol. 33, no. 3, pp. 1201–1212.
[27] Böttcher M., Krüβmann R. Primary loop study of a VVER-1000 reactor with
special focus on coolant mixing.
Nuclear Engineering and Design
, 2010,
vol. 240, no. 9, pp. 2244–2253.
[28]
Pang S., Chen L., Zhang M., Yin Y., Chen T., Zhou J., Liao D. Numerical simula-
tion two phase flows of casting filling process using SOLA particle level set meth-
od.
Applied Mathematical Modelling
, 2010, vol. 34, no. 12, pp. 4106–4122.
[29] Yang X., Schlegel J.P., Liu Y., Paranjape S., Hibiki T., Ishii M. Experimental
study of interfacial area transport in air-water two-phase flow in a scaled
8 8
×
BWR rod bundle.
International Journal of Multiphase Flow
, 2013, vol. 50,
pp. 16–32.
[30] Yuan Y.-X., Dai H. A generalized inverse eigenvalue problem in structural dy-
namic model updating.
Journal of Computational and Applied Mathematics
,
2009, vol. 226, no. 1, pp. 42–49.
1,2,3,4,5,6,7 9,10,11
Powered by FlippingBook