Семейство гибридных алгоритмов оптимизации и диагностирования гидромеханических систем - page 7

Семейство гибридных алгоритмов оптимизации и диагностирования…
7
Работа выполнена при финансовой поддержке Министерства образо-
вания и науки РФ (грант Президента РФ по поддержке научных исследо-
ваний ведущих научных школ РФ, код НШ-4748.2012.8).
ЛИТЕРАТУРА
[1]
Pulecchi T., Casella F., Lovera M. Object-oriented modelling for spacecraft
dynamics: Tools and applications.
Simulation Modelling and Theory
, 2010,
vol. 18, no. 1, pp. 63–86.
[2]
Viana F.A., Steffen J.V., Butkewitsch S., de Freitas L.M. Optimization of air-
craft structural components by using nature-inspired algorithms and multi-
fidelity approximations.
Journal of Global Optimization
, 2009, vol. 45, no. 3,
pp. 427–449.
[3]
Avramova M.N., Ivanov K.N. Verification, validation and uncertainty quantifi-
cation in multi-physics modeling for nuclear reactor design and safety analysis.
Progress in Nuclear Energy
, 2008, vol. 52, no. 4, pp. 861–867.
[4]
Valeriano-Medina Y., Martínez A., Hernández L., Sahli H., Rodríguez Y.,
Cañizares J.R. Dynamic model for an autonomous underwater vehicle based on
experimental data.
Mathematical and Computer Modelling of Dynamical Sys-
tems
, 2013, vol. 19, no. 2, pp. 175–200.
[5]
Faβbender H., Soppa A. Machine tool simulation based on reduced order
FE models.
Mathematics and Computers in Simulation
, 2011, vol. 82, no. 2,
pp. 404–413.
[6]
Antoulas A.C., Sorensen D.C. Approximation of large scale dynamic systems:
an overview.
International Journal of Applied Mathematics and Computer Sci-
ence
, 2001, vol. 11, no. 5, pp. 1093–1121.
[7]
Lopez I., Sarigul-Klijn N. A review of uncertainty in flight vehicle structural
damage monitoring, diagnosis and control: Challenges and opportunities.
Pro-
gress in Aerospace Sciences
, 2010, vol. 46, no. 7, pp. 247–273.
[8]
Kinelev V.G., Shkapov P.M., Sulimov V.D. Application of global optimization
to VVER-1000 reactor diagnostics.
Progress in Nuclear Energy
, 2003, vol. 43,
no. 1–4, pp. 51–56.
[9]
De Oliveira M.V., de Almeida J.C.S. Applications of artificial intelligence
techniques in modeling and control of a nuclear power plant pressurizer system.
Progress in Nuclear Energy
, 2013, vol. 63, pp. 71–85.
[10] Murray-Smith D.J. The application of parameter sensitivity analysis methods to
inverse simulation models.
Mathematical and Computer Modelling of Dynam-
ical Systems
, 2013, vol. 19, no. 1, pp. 67–90.
[11] Gugercin S., Antoulas A.C. Model reduction of large-scale systems by least
square.
Linear Algebra and its Applications
, 2006, vol. 415, no. 2–3, pp. 290–
321.
[12] Koutsovasilis P., Beitelschmidt M. Model order reduction of finite element
models: improved component mode synthesis.
Mathematical and Computer
Modelling of Dynamical Systems
, 2010, vol. 16, no. 1, pp. 57–73.
[13]
Jirásek A., Cummings R.M. Reduced order modeling of X-31 wind tunnel
model aerodynamic loads.
Aerospace Science and Technology
, 2012, vol. 20,
no. 1, pp. 52–60.
[14]
Park N.-G., Kim K.-J., Kim K.-H., Suh J.-M. A computational technique to
identify the optimal stiffness matrix for a discrete nuclear fuel assembly model.
Nuclear Engineering and Design
, 2013, vol. 255, pp. 51–58.
1,2,3,4,5,6 8,9,10,11
Powered by FlippingBook