53. W a k u d a T., N a k a n o T., I w a k u m a M., et al.
E
−
J
characteristics and
a.c. losses in a superconducting Bi(2223) hollow cylinder // Cryogenics. – 1997. –
Vol. 37. No. 7. – P. 381–388.
54. W a t a n a b e K., M o t o k a w a M. New concept of a semi-superconducting
magnet // IEEE Trans. on Appl. Supercon. – 2001. – Vol. 11. No. 1. – P. 2320–2323.
55. K o d a m a T., F u k u d a M., S h i r a i s h i K., et al.
E
−
J
characteristics in a
wide range of electric field for a Bi-2223 silver-sheathed tape wire // Physica C. –
2001. – Vol. 357–360. – P. 582–585.
56. K u m a k u r a H., M a t s u m o t o A., S u n g Y. S., K i t a g u c h i H.
E
−
J
characteristics of Bi-2212/Ag and Bi-2223/Ag tape conductors // Physica C. – 2003.
– Vol. 384. – P. 283–290.
57. I n o u e M., K i s s T., K u g a T., et al. Estimation of
E
−
J
characteristics in a
YBCO coated conductor at low temperature and very high magnetic field // Physica
C. – 2003. – Vol. 392–396. – P. 1078–1082.
58. K e i l i n V. E., R o m a n o v s k i i V. R. Limiting currents in superconducting
composites // IEEE Trans. on Mag. – 1992. – Vol. 12. No. 1. – P. 771–774.
59. R a k h m a n o v A. L., Vy s o t s k y V. S., I l y i n Y u. A., et al. Scaling for
the quench development in HTSC devices–theory // Inst. Phys. Conf. Ser. No. 167.
– 2000. – P. 1243–1246.
60. R a k h m a n o v A. L., Vy s o t s k y V. S., I l y i n Y u. A., et al. Universal
scaling low for quench development in HTSC devices // Cryogenics. – 2000. –
Vol. 40. No. 1. – P. 19–27.
61. N i s h i j i m a G., Aw a j i S., M u r a s e S., et al. Thermal stability of oxide
superconductor at various temperatures // IEEE Trans. on Appl. Supercon. – 2002. –
Vol. 12. No. 1. – P. 1155–1158.
62. N i s h i j i m a G., Aw a j i S., Wa t a n a b e K. Thermal stability of oxide
superconductors in flux flow state // IEEE Trans. on Appl. Supercon. – 2003. –
Vol. 13. No. 2. – P. 1576–1579.
63. F u j i s h i r o H., O k a T., Yo k o y a m a K., et al. Time evolution and
spatial distribution of temperature in YBCO bulk superconductor after pulse field
magnetizing // Supercond. Sci. Technol. – 2003. – Vol. 16. – P. 809–814.
64. F u j i s h i r o H., O k a T., Yo k o y a m a K., et al. Flux motion studies by means
of temperature measurement in magnetizing processes for HTSC bulks // IEEE Trans.
on Appl. Supercon. – 2004. – Vol. 14. No. 2. – P. 1054–1057.
65. F u j i s h i r o H., Yo k o y a m a K., O k a T., et al. Temperature rise in an Sm-
based bulk superconductor after applying iterative pulse fields // Supercond. Sci.
Technol. – 2004. – Vol. 17. – P. 51–57.
66. F u j i s h i r o H., Yo k o y a m a K., K a n e y a m a M., et al. Approach from
temperature measurement to trapped field enhancement in HTSC bulks by pulse field
magnetizing // Physica C. – 2005. – Vol. 426-431. – P. 594–601.
67. F u j i s h i r o H., K a w a g u c h i S., K a n e y a m a M., et al. Heat propagation
analysis in HTSC bulks during pulse field magnetization // Supercond. Sci. Technol.
– 2006. – Vol. 19. – P. S540–S544.
68. T a n a k a H., F u r u s e M., A r a i K., et al. Thermal runaway and resistive
properties of a Bi2223 pancake coil subjected to overcurrent // IEEE Trans. on Appl.
Supercon. – 2005. – Vol. 15. No. 2. – P. 2094–2097.
69. К л и м е н к о Е. Ю., М а р т о в е ц к и й Н. Н., Н о в и к о в С. И. О мак-
симальном токе в сверхпроводящем проводе // ДАН. – 1985. – Т. 282. № 5. –
С. 1123–1127.
70. K l i m e n k o E. Y u., M a r t o v e t s k y N. N. Stability of SC composite at rapid
current charging and against pulsed heating // IEEE Trans. on Mag. – 1988. – Vol. 24.
No. 2. – P. 1167–1169.
71. A l t o v V. V., K r e m l e v M. G., et al. Calculation of propagation velocity of
normal and superconducting regions in composite conductors // Cryogenics. – 1978.
– Vol. 13. No. 5. – P. 420–422.
30