72. C h e n W. Y., P u r c e l l J. R. Numerical study of normal zone evolution and
stability of composite superconductors // J. Appl. Phys. – 1978. – Vol. 49. No. 6. –
P. 3546–3553.
73. S c h m i d t C., P a s z t o r G. Superconductors under dynamic mechanical stress
// IEEE Trans. on Mag. – 1977. – Vol. 13. No. 1. – P. 116–119.
74. S c h m i d t C. The induction of a propagating normal zone (quench) in a
superconductor by local release // Cryogenics. – 1978. – Vol. 18. No. 10. – P. 605–610.
75. N i c k W., K r a t h H., R i e s J. Cryogenic stability of composite conductors
taking into account transient heat transfer // IEEE Trans. on Mag. – 1979. – Vol. 15.
No. 1. – P. 359–362.
76. I s h i b a s h i K., et al. Thermal stability of SC high current density magnets pulse
// Cryogenics. – 1979. – Vol. 19. No. 11. – P. 633–638.
77. A n a s h k i n O. P., K e i l i n V. E., L y i k o v V. V. Stability of compound
superconductors under localized heat pulse // Cryogenics. – 1979. – Vol. 19. No. 2.
– P. 77–80.
78. K e i l i n V. E., K o v a l e v I. A., K r u g l o v S. L., P a v i n D. B.
Superconductor stability against heat pulses in saturated and pressurized superfluid
helium // Cryogenics. – 1980. – Vol. 20. No. 10. – P. 694–696.
79. A n a s h k i n O. P., K e i l i n V. E., L y i k o v V. V. The influence of Sc/Cu ratio
and filament distribution on the stability of superconductors with respect to local heat
pulse // Cryogenics. – 1982. – Vol. 22. No. 3. – P. 169–174.
80. K e i l i n V. E., R o m a n o v s k y V. R. The dimensionless analysis of the stability
of composite superconductors with respect to thermal disturbances // Cryogenics. –
1982. – Vol. 22. No. 6. – P. 313–317.
81. Р о м а н о в с к и й В. Р. Правомерность использования теории минимально
распространяющейся нормальной зоны для анализа тепловой стабильности
комбинированных сверхпроводников // ДАН СССР. – 1984. – Т. 279. № 4. –
С. 884–887.
82. R o m a n o v s k y V. R. Regularity of thermal stability conditions of composite
superconductors postulated by the theory of minimum propagating zone // J. Phys.
D: Appl. Phys. – 1985. – Vol. 18. – P. 121–127.
83. B u z n i k o v N. A., P u k h o v A. A. Analytical method to calculate the quench
energy of a superconductor carrying a transport current // Cryogenics. – 1996. –
Vol. 36. No. 7. – P. 547–553.
84. I v a n o v S. S., P u k h o v A. A., S h c h e g o l e v I. O. Scaling law for quench
energies of composite superconductors // Supercond. Sci. Technol. – 1994. – Vol. 7.
– P. 502–505.
85. R o m a n o v s k i i V. R. Influence of volume fraction of superconductor on the
stability of superconducting composites with respect to thermal disturbances of finite
extent // Cryogenics. – 1985. – Vol. 25. No. 6. – P. 327–333.
86. K e i l i n V. E., L y i k o v V. V., R o m a n o v s k i i V. R. Development
of superconducting solenoids from multifilamentary niobium – tin wires without
stabilizing matrix and analysis of their thermal stability // Cryogenics. – 1985. –
Vol. 25. No. 9. – P. 462–465.
87. R o m a n o v s k i i V. R. Stability of superconducting composites under thermal
disturbances with change in the external magnetic field and the critical temperature
of the superconductor // Cryogenics. – 1988. – Vol. 28. No. 11. – P. 756–761.
88. R o m a n o v s k i i V. R. Stability of current-carrying elements of superconducting
magnets to thermal disturbances // Advances in Cryog. Engng. – 1990. – Vol. 35. –
P. 693–699.
89. Р о м а н о в с к и й В. Р. Решение задачи об устойчивости сверхпроводящего
состояния цилиндрического провода к поверхностному нагреву в двумерной
постановке // ЖТФ. – 1990. – Т. 60. Вып. 4. – С. 31–36.
90. Р о м а н о в с к и й В. Р. Стационарная стабилизация сверхпроводящего токо-
несущего элемента при неравномерном распределении температуры в попереч-
ном сечении // ДАН. – 1993. – Т. 330. № 3. – С. 304–307.
31