Previous Page  16 / 17 Next Page
Information
Show Menu
Previous Page 16 / 17 Next Page
Page Background

E.A. Andreev, V.I. Krylov, A.V. Novikov, O.E. Shatskiy

16

Engineering Journal: Science and Innovation

# 1·2018

Parameter calculation and design of an autonomous

thermal cutting machine based on the combustion chamber

of a low-thrust rocket engine

©

E.A. Andreev, V.I. Krylov, A.V. Novikov, O.E. Shatskiy

Bauman Moscow State Technical University, Moscow, 105005, Russia

As part of rocket engine development conversion we designed a metal cutting installation

based on an oxygen/kerosene low-thrust rocket engine (LTRE). We solved the problem of

cooling the combustion chamber and nozzle without involving a third component, i.e.

water, strictly by means of employing regenerative cooling of the combustion chamber

walls by kerosene supplied through pipes into the inter-jacket space, flowing from the

injector head to the nozzle and subsequently returning to the combustion chamber head

through adjacent pipes. By computing the LTRE thermal state we validated the feasibility

of using regenerative kerosene cooling to sustain desired operational thermal conditions

in the LTRE combustion chamber. We used computation results and experimental data to

develop the design and documentation for a general-purpose thermal cutting machine

UTR-2S. Experimental testing results in the case of this thermal cutting machine con-

firmed the validity of the mathematical model and correctness of our assumptions.

Keywords:

conversion, rocket engine, thermal cutting machine, heat transfer, mass trans-

fer, diffusion coefficient, coolant, combustion chamber specific impulse, propellant mix-

ing, enthalpy

REFERENCES

[1]

Aleksandrenkov V.P., Lapitskiy V.I., Novikov V.I.

Rynok vtorichnykh metallov

(Scrap metal market), 2002, no. 6, pp. 12–15.

[2]

Burkaltsev V.A., Lapitskiy V.I., Novikov A.V., Yagodnikov D.A.

Vestnik

MGTU im.N.E.Baumana. Ser. Mashinostroenie — Herald of the Bauman

Moscow State Technical University. Series Mechanical Engineering

, 2004,

spets. vypusk. Teoriya i praktika sovremennogo raketnogo dvigatelestroeniya

[Special issue on Theory and practice of contemporary rocket engine

development], pp. 8–17.

[3]

Spalding D.B.

Combustion and Mass Transfer

. Pergamon Press, 1979, 409 p. [In

Russ.: Spalding D.B. Gorenie i massoobmen. Moscow, Mashinostroenie Publ.,

1985, 240 p.].

[4]

Dobrovolskiy M.V.

Zhidkostnye raketnye dvigateli

[Liquid rocket engines].

Moscow, BMSTU Publ., 2016.

[5]

Belyaev E.N., Chervakov V.V.

Matematicheskoe modelirovanie ZhRD

[Mathematical simulation of liquid rocket engines]. Moscow, MAI-PRINT

Publ., 2009, 280 p.

[6]

Trusov B.G.

Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal:

Science

and

Innovation

,

2012,

issue

1.

Available

at:

http://dx.doi.org/10.18698/2308-6033-2012-1-31

[7]

Yagodnikov D.A., ed.

Aktualnye problemy raketnogo dvigatelestroeniya

[Current problems in rocket engine development]. Moscow, BMSTU Publ.,

2017, 295 p.

[8]

Dorofeev A.A., Yagodnikov D.A., Chertkov K.O.

Izvestiya vysshikh uchebnykh

zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions.

Маchine Building

, 2015, no. 10, pp. 84–94.