Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

М.А. Комков, Д.А. Потапов, А.А. Кудрявцев

10

Инженерный журнал: наука и инновации

# 9·2017

Optimizing the angle of winding carbon fiber reinforced

plastic on the metal liner of the cryogenic pipeline

© M.A. Komkov, D.A. Potapov, A.A. Kudryavtsev

Bauman Moscow State Technical University, Moscow, 105005, Russia

The study shows the importance of creating cryogenic pipelines for propulsion systems of

aircraft from combined materials based on an ultra-thin steel liner and wound carbon fiber

reinforced plastic. We analyzed the pipeline's cooldown to cryogenic temperatures and found

out that due to a significant difference in coefficients of linear thermal expansion of the liner

and carbon fiber reinforced plastic materials, the axial stability can be lost with the formation

of plications in a thin-walled steel shell. We suggest a technique for determining and selecting

the angle of winding carbon fiber reinforced plastic, in which the axial deformations of a thin-

walled liner and a wound composite will have the same level of deformation.

Keywords:

pipeline, combined shell, cryogenic temperature, linear expansion coefficient

REFERENCES

[1]

Patrunov F.G.

Nizhe 120 gradusov po Kelvinu

[Below 120 degrees Kelvin].

Moscow, Znanie Publ., 1989, 176 p.

[2]

Mokhov V.

Novosti kosmonavtiki

[Cosmonautics news], 1998, no. 21/22,

pp. 42–43.

[3]

Zhuravin Yu.

Novosti kosmonavtiki

[Cosmonautics news], 1999, no. 3 (194),

1999, pp. 48–49.

[4]

Bulanov I.M., Komkov M.A.

Vestnik MGTU im. N.E. Baumana. Ser.

Mashinostroenie — Herald of the Bauman Moscow State Technical University.

Series: Mechanical Engineering

, 1992, no. 1, pp. 14–24.

[5]

Sabelnikov V.V., Komkov M.A., Samoryadov A.V.

Klei. Germetiki.

Tekhnologii — Polymer Science. Series D

, 2005, no. 1, pp. 16–20.

[6]

Andreev V.A., Borisov V.D., Klimov V.T. et al.

Vnimanie: gazy. Kriogennoe

toplivo dlya aviatsii: Spravochnik-vospominanie dlia vsekh

[Important: gases.

Cryogenic fuel for aviation: a Handbook of recollection for evetyone]. Moscow,

Moskovskiy rabochiy Publ., 2001, 223 p.

[7]

Fedorov G., Maksimovich G.

Kryl'ya Rodiny

[Wings of the Motherland], 1988–

1992.

[8]

Komkov M.A., Tarasov V.A., Borodulin A.S.

Vestnik MGTU im. N.E. Baumana.

Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical

University. Series: Mechanical Engineering

, 2012, no. 4, pp. 78–85.

[9]

Komkov M.A., Tarasov V.A.

Tekhnologiya namotki kompozitnykh konstruktsiy

raket i sredstv porazheniya

[Technology of winding composite structures of

missiles and weapons]. Moscow, BMSTU Publ., 2011, 431 p.

[10]

Vigli D.A.

Mekhanicheskie svoystva materialov pri nizkikh temperaturakh

[Mechanical properties of materials at low temperatures]. Moscow, Mir Publ.,

1974, 374 p.

[11]

Krasovskiy A.Ya., ed.

Prochnost materialov i konstruktsiy pri kriogennykh

temperaturakh

[Strength of materials and structures at cryogenic temperatures].

Kiev, Naukova dumka Publ., 1988, 239 p.

[12]

Vyshvenyuk V.I.

GONTI, ser. VIII

, no. 52. Moscow, TsNTI Poisk Publ., 1987.