Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

Создание твердотопливных зарядов для ракетных двигателей твердого топлива…

Инженерный журнал: наука и инновации

# 6·2017 9

Manufacturing of propellant grains for solid

rocket motors using additive technology

© S.S. Kurdov, V.E. Zavolokin, M.A. Komkov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The paper considers the development of a propellant grain with the maximum cross-

section curvature for SRM, which would provide maximum SRM thrust. However, mod-

ern propellant grain production technologies cannot enable the production of complex

cross-section propellant grains due to existing geometrical and structural parameters of

the fuel. It sidelines modern space engineering. Additive technologies make it possible to

produce complex curve shaped items. The development of 3D-printer capable of printing

the propellant grain for SRM would allow producing SRM with different power charac-

teristics depending on customer’s preferable tasks. In our work we introduce a new tech-

nology for producing the propellant grain for SRM. Moreover, we describe some funda-

mental principles and potential problems of producing 3D-printer for printing the pro-

pellant grain for SRM. We also suggest the ways to solve the problems and give the

printer conceptual image and its hardware flowchart. In order to carry out tests on fine-

tuning technologies of printing the relevant propellant grain, we analyze a specific model

of the propellant grain for SRM. Finally, we propose other fields of application for the

high-energy propellant grain technology.

Keywords:

solid rocket motor, additive technology, 3D-printer, rocket-space engineering,

rocket-space technology, mixed fuel

REFERENCES

[1]

Jones R. Hybrid Rocket Engines Use Additive Manufacturing to Combine the

Advantages of Solid and Liquid Propellants.

Stratasys.

Available at:

http://www.stratasys.com/resources/case-studies/aerospace/rocket-crafters

(accessed January 10, 2017).

[2]

Yagodnikov D.A., Andreev E.A., Eykhenvald V.N., Kozlov V.A.

Osnovy

proektirovaniya raketnykh dvigatelnykh ustanovok na tverdom toplive

[Design

principles of solid fuel rocket propulsion systems]. Moscow, BMSTU Publ.,

2009, 168 p.

[3]

Fused deposition modeling (FDM).

Available at:

https://en.wikipedia.org/wiki/Fused_deposition_modeling

(ac-

cessed January 10, 2017).

[4]

Karamelnoe raketnoe toplivo

[Caramel rocket fuel]. Available at:

https://ru.wikipedia.org/wiki/Карамельное_ракетное_топливо

(accessed

January 10, 2017).

[5]

Sidorov O.I., Poisova T.P., Khayrullin

Z.Ya.

, Parshina E.I., Metelev A.I.,

Samoylenko A.F., Milekhin Yu.M., Merkulov V.M., Banzula Yu.B., Kapito-

nov A.V., Parfenova N. N.

Sposob izgotovleniya prochnoskreplennogo s korpusom

raketnogo dvigatelya zaryada smesevogo raketnogo tverdogo topliva

[Method

of manufacturing a firmly fastened rocket-motor case rocket engine of compo-

site propellant grain propellant]. Patent RF, no. 2008129339/02, 2009,

bul. no. 33, 13 p.