Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

Моделирование деформирования упругого основания…

Инженерный журнал: наука и инновации

# 11·2016 13

Simulation of elastic foundation deformation

in composite cylindrical shell

© V.M. Dubrovin, T.A. Butina

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article considers the elastic properties calculation method (compliance coefficients)

of continuous elastic foundation, which is the link between the inner and outer cylindrical

shells forming the composite shell. The method takes into account the two shells geometry

and the physical-mechanical properties of the elastic foundation material. The method

described presents the plane problem of the elasticity theory as a system with the finite

number of degrees of freedom in the transverse direction, while maintaining the infinite

number of degrees of freedom in the longitudinal direction.

Keywords:

composite shell, inner shell, outer shell, continuous elastic foundation, gener-

alized model, single-layer model, displacement method, equilibrium condition, compli-

ance factor.

REFERENCES

[1]

Vlasov V.Z., Leontev N.N.

Balki, plity i obolochki na uprugom osnovanii

[Beams, plates and shells on the elastic foundation]. Moscow, Fizmatlit Publ.,

1960, 490 p.

[2]

Dimitrienko Yu.I.

Nelineynaya mekhanika sploshnoy sredy

[Nonlinear

continuum mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p.

[3]

Dimitrienko Yu.I.

Universalnye zakony mekhaniki i elektrodinamiki sploshnoy

sredy

[Universal continuum laws of mechanics and electrodynamics]. Moscow,

BMSTU Publ., 2011, 560 p.

[4]

Rabotnov Yu.N.

Problemy mekhaniki deformiruemogo tverdogo tela

[The

problems of solid mechanics]. Selected works. Moscow, Nauka Publ., 1991,

194 p.

[5]

Bushuev

A.Yu.

, Farafonov B.A

. Matematicheskoe modelirovanie i chislennye

metody — Mathematical Modeling and Computational Methods

, 2014, no. 2,

pp. 101–114.

[6]

Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V.

Applied Mathematical

Sciences

, 2015, vol. 9, no. 145, pp. 7211–7220. Available at:

http://dx.doi.org/10.12988/ams.2015.510641 http://www.m-hikari.com/ams/ams-2015/ams-145-148-2015/p/dimitrienkoAMS145-

148-2015.pdf

[7]

Okopny Yu.A., Rodin V.P., Charkov I.P.

Mekhanika materialov i konstruktsiy

[Mechanics of Materials and Structures]. Moscow, Mashinostroenie Publ., 2001,

407 p.

[8]

Dimitrienko Yu.I.

Mekhanika sploshnoy sredy. V 4 tomakh. Tom 1. Tenzornyy

analiz

[Continuum Mechanics. In 4 vols. Vol. 1. Tensor Analysis]. Moscow,

BMSTU Publ., 2011, 463 p.

[9]

Feodosev V.I.

Izbrannye zadachi i voprosy po soprotivleniyu materialov

[Selected problems and questions about the strength of materials]. Moscow,

Nauka Publ., 1993, 400 p.

[10]

Zhilin P.A.

Aktualnye problemy mekhaniki

[Actual Problems in Mechanics]. St.

Petersburg Polytechnic University Publ., 2006, 306 p.