Система распознавания базовых эмоций на основе анализа двигательных единиц лица
Инженерный журнал: наука и инновации
# 9·2016 15
Emotion recognition system based on the facial motor
units’ analysis
© A.S. Bobe, D.V. Konyshev, S.A. Vorotniko
v
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article describes the human emotion recognition system
embodiment
to support ver-
bal communication with service anthropomorphic robots and considers existing emotion
recognition approaches. We investigated a new algorithm for P. Ekman’s estimation of
main emotions based on 20 informative facial image features evaluation. Three inde-
pendent classifiers calculated each emotion intensity. The algorithm is implemented in Qt
medium and tested on two image databases, as well as in real time, showing average
recognition rate of about 85 %. The system can be used in neurocomputer interface ap-
plications in robotics and psychological diagnosis systems.
Keywords:
service robotics, brain-computer interface, emotional state, mimics, pattern
recognition, machine learning.
REFERENCES
[1]
Konyshev D.V., Vorotnikov S.A., Vybornov N.A.
Prikaspiyskiy Zhurnal:
Upravlenie i Vysokie Tekhnologii — Caspian Journal: Control and High
Technologies
, 2014, no. 3, pp. 216–229.
[2]
Breazeal P.
Robot Emotion:
a functional perspective. Who Needs Emotions: The
Brain Meets the Robot
. The MIT Press Publ., 2004, рр. 137–168.
[3]
Ekman P., Friesen W.V., Hager J.C.
Facial Acton Coding System. The Manual
.
Research Nexus division of Network Information Research Corporation Publ.,
2002.
[4]
Tariq U., Lin K., Li Z., Zhou Z, Wang Z., Le V., Huang T.S., Lv X., Han T.X.,
Emotion Recognition from an Ensemble of Features.
Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions
, 2012, vol. 42, no. 4,
pp. 1017–1026.
[5]
Zhao G., Pietikäinen M.
Experiments with Facial Expression Recognition Using
Spatiotemporal Local Binary Patterns.
University of OuluPubl., Finland, 2007.
[6]
Zhao G., Pietikäinen M. Dynamic Texture Recognition Using Local Binary
Patterns with an Application to Facial Expressions.
IEEE Trans. Pattern
Analysis and Machine Intelligence
, 2007, vol. 29, pp. 915–928.
[7]
Bartlett M.S., Hager J.C, Ekman P., Seynowskie T.J.
Measuring facial
expressions by computer image analysis
. Cambridge University Press Publ.,
1999, pp. 253–263.
[8]
Chandrani S., Washef A., Soma M., Debasis M.
Facial Expressions: A Cross-
Cultural Study. Emotion Recognition: A Pattern Analysis Approach
. Wiley
Publ., 2015, pp. 69–86.
[9]
Zaboleeva-Zotova A.V.
Otkrytoe obrazovanie — Open Education
, 2011, no. 2,
pp. 59–62.
[10]
Milborrow S., Nicolls F.
Active Shape Models with SIFT Descriptors andMARS,
VISAPP (2) Publ., 2014, pp. 380–387.
[11]
Gabor D. Theory of Communication
.
Part 1: The analysis of information
.
Journal of the IEE
, 1946, vol. 93, no. 26, pp. 429–441.