Table of Contents Table of Contents
Previous Page  15 / 16 Next Page
Information
Show Menu
Previous Page 15 / 16 Next Page
Page Background

Система распознавания базовых эмоций на основе анализа двигательных единиц лица

Инженерный журнал: наука и инновации

# 9·2016 15

Emotion recognition system based on the facial motor

units’ analysis

© A.S. Bobe, D.V. Konyshev, S.A. Vorotniko

v

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article describes the human emotion recognition system

embodiment

to support ver-

bal communication with service anthropomorphic robots and considers existing emotion

recognition approaches. We investigated a new algorithm for P. Ekman’s estimation of

main emotions based on 20 informative facial image features evaluation. Three inde-

pendent classifiers calculated each emotion intensity. The algorithm is implemented in Qt

medium and tested on two image databases, as well as in real time, showing average

recognition rate of about 85 %. The system can be used in neurocomputer interface ap-

plications in robotics and psychological diagnosis systems.

Keywords:

service robotics, brain-computer interface, emotional state, mimics, pattern

recognition, machine learning.

REFERENCES

[1]

Konyshev D.V., Vorotnikov S.A., Vybornov N.A.

Prikaspiyskiy Zhurnal:

Upravlenie i Vysokie Tekhnologii — Caspian Journal: Control and High

Technologies

, 2014, no. 3, pp. 216–229.

[2]

Breazeal P.

Robot Emotion:

a functional perspective. Who Needs Emotions: The

Brain Meets the Robot

. The MIT Press Publ., 2004, рр. 137–168.

[3]

Ekman P., Friesen W.V., Hager J.C.

Facial Acton Coding System. The Manual

.

Research Nexus division of Network Information Research Corporation Publ.,

2002.

[4]

Tariq U., Lin K., Li Z., Zhou Z, Wang Z., Le V., Huang T.S., Lv X., Han T.X.,

Emotion Recognition from an Ensemble of Features.

Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions

, 2012, vol. 42, no. 4,

pp. 1017–1026.

[5]

Zhao G., Pietikäinen M.

Experiments with Facial Expression Recognition Using

Spatiotemporal Local Binary Patterns.

University of OuluPubl., Finland, 2007.

[6]

Zhao G., Pietikäinen M. Dynamic Texture Recognition Using Local Binary

Patterns with an Application to Facial Expressions.

IEEE Trans. Pattern

Analysis and Machine Intelligence

, 2007, vol. 29, pp. 915–928.

[7]

Bartlett M.S., Hager J.C, Ekman P., Seynowskie T.J.

Measuring facial

expressions by computer image analysis

. Cambridge University Press Publ.,

1999, pp. 253–263.

[8]

Chandrani S., Washef A., Soma M., Debasis M.

Facial Expressions: A Cross-

Cultural Study. Emotion Recognition: A Pattern Analysis Approach

. Wiley

Publ., 2015, pp. 69–86.

[9]

Zaboleeva-Zotova A.V.

Otkrytoe obrazovanie — Open Education

, 2011, no. 2,

pp. 59–62.

[10]

Milborrow S., Nicolls F.

Active Shape Models with SIFT Descriptors andMARS,

VISAPP (2) Publ., 2014, pp. 380–387.

[11]

Gabor D. Theory of Communication

.

Part 1: The analysis of information

.

Journal of the IEE

, 1946, vol. 93, no. 26, pp. 429–441.