Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

А.С. Бовтрикова, Г.Г. Мордвинцев

10

Инженерный журнал: наука и инновации

# 4·2016

Computational study of gas dynamic processes at startup

of the propulsion of emergency rescue system

© A.S. Bovtrikova, G.G. Mordvintsev

JSC “Corporation Moscow Institute of Thermal Technology”, Moscow, 127273, Russia

The article considers the results of numerical simulation of unsteady gas-dynamic pro-

cesses accompanying start-up of perspective emergency rescue system propulsion. The

computation was performed for a number of specific points of the injection trajectory

using FloEFD package. It is shown that the maximum transient loads occur when firing

thruster of emergency rescue system on the starting point of the trajectory corresponding

to the conditions at the Earth's surface.

Keywords:

propulsion system, unsteady jet flow, emergency rescue system, thruster duty

cycle; jet-shock interaction.

REFERENCES

[1] Dettleff G. Plume flow and plume impingement in space technology.

Progress

in Aerospace Sciences,

1991, no. 28 (1), pp. 1–71.

[2] Sparks D.W., Raney Jr.L., Raney D.L.

Crew Exploration Vehicle Launch Abort

Controller Performance Analysis

. NASA Langley Research Center, Hampton, VA.

Available at:

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070031761.pdf

(accessed 15 May 2015).

[3] Williams-Hayes P.S.

Crew Exploration Vehicle Launch Abort System Flight Test

Overview.

NASA Dryden Flight Research Center, Edwards, California. Available at:

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070028416.pdf

(accessed

17 May 2015).

[4] Mordvintsev G.G.

Kosmonavtika i raketostroenie — Cosmonautics and Rocket

Engineering

, 2007, no. 1 (46), pp. 80–85.

[5] Dyadkin A.A., Sukhorukov V.P., Mikhaylova M.K., Shchelyaev A.E.

Avtomatizatsiya proektirovaniya — Design Automation

, 2011, no. 4, pp. 42–45.

[6] Markova T.V., Moskalev I.V., Aksenov A.A., Dyadkin A.A., Rybak S.P.

Chislennoe modelirovanie udarno-volnovykh vozdeystviy na vozvrashchaemyy

apparat pilotiruemogo transportnogo korablya pri srabatyvanii sistemy avariynogo

spaseniya

[Numerical Simulation of Shock-Wave Effects on the Reentry Vehicle of

the Manned Transport Spacecraft at Emergency Rescue System Activation].

Available at:

http://tesis.com.ru/infocenter/downloads/flowvision/fv_es13_tesis_energia.pdf

(accessed 28 September 2015).

[7]

FloEFD Technical Reference.

Mentor Graphics Corporation Publ., 2011.

[8]

Enhanced turbulence modeling

in FloEFD

. Mentor Graphics Corporation Publ.,

2011.

[9] Kalugin V.T., Mordvintsev G.G., Popov V.M.

Modelirovanie protsessov

obtekaniya i upravleniya aerodinamicheskimi kharakteristikami letatelnykh

apparatov

[Modeling Flow Processes and Control of Aircraft Aerodynamic

Characteristics]. Moscow, BMSTU Publ., 2011, 528 p.

[10] Kalugin V.T.

Aerodinamika

[Aerodynamics]. Moscow, BMSTU Publ., 2010,

688 p.