С.В. Соловьев
12
Инженерный журнал: наука и инновации
# 2
2016
Intelligent analysis technique for automated prediction
of spacecraft status
© S.V. Soloviev
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article considers methods of predicting technical status of spacecraft. Differences
between intelligent data analysis and traditional algorithms are given. The process of
introducing intelligent systems into spacecraft flight control practice is evaluated.
Keywords:
flight control, intelligent analysis, IMS, prediction problems.
REFERENCES
[1]
Eliseev A.S.
Tekhnika kosmicheskikh poletov
[Space flight technology].
Moscow, Mashinostroenie Publ., 1983.
[2]
Kravets V.G.
Avtomatizirovannye sistemy upravleniya kosmicheskimi poletami
[Automated space flight control systems]. Moscow, Mashinostroenie Publ.,
1995.
[3]
Lyubinskiy V.E., Soloviev V.A.
Polet – Flight
, 2005, no. 6, pp. 3–6.
[4]
Soloviev V.A.
Kontrol informatsii i prinyatie operativnykh resheniy pri
upravlenii poletom pilotiruemykh kosmicheskikh apparatov
[Information
monitoring and operational decision-making in manned spacecraft flight
control]. Moscow, BMSTU Publ., 1998.
[5]
Derevyanko V.V. Primenenie DataMining v kosmicheskikh prilozheniyakh
[Data Mining applications in space technologies].
Issledovaniya naukograda
[Research of the ”Science City”], 2012, no. 1 (1), pp. 47–51.
[6]
Soloviev V.A., Lyubinskiy V.E., Zhuk E.I.
Pilotiruemye polety v kosmos –
Manned Space Flight
, 2012, no. 1 (3), pp. 15–26.
[7]
Paklin N.
Algoritmy klasterizatsii na sluzhbe DataMining
[Clusterisation
algorithms in service of Data Mining]. Available at: https://
basegroup.ru/community/articles/datamining(accessed 28 December, 2015).
[8]
Iverson D. L.
Data Mining Applications for Space Mission Operations System
Health Monitoring.
NASA Ames Research Center, Moffett Field, California.
Available at:
http://www.slideshare.net/Tommy96/data-mining-applications-for-space-mission-operations (accessed 28 December, 2015).
[9]
Iverson D. L., Rodney Martin.
General Purpose Data-Driven System
Monitoring for Space Operations
. NASA Ames Research Center, Moffett Field,
California.
Available at:
http://www.enu.kz/repository/2009/AIAA-2009-1909.pdf (accessed 28 December, 2015).
[10]
Iverson D.L.
Inductive System Health Monitoring Published in the Proceedings of
The 2004 International Conference on Artificial Intelligence (IC-AI’04)
, CSREA
Press, Las Vegas, NV, June 2004. URL:
https://www.researchgate.net/publication/220835201_Inductive_System_Health_Monitoring (accessed 28 December, 2015).
[11] Teubert Ch., Scott Poll.
Application of Inductive Monitoring System to Plug
Load Anomaly Detection
. NASA USRP Intern, Iowa State University, Ames,
IA, 50011, USA. Available at:
http://www.phmsociety.org/node/842/(accessed
28 December, 2015).
[12] Schwabacher M.
Pre-Launch Diagnostics for Launch Vehicles
. NASA Ames
Research Center. Available at:
http://www.enu.kz/repository/2010/AIAA-2010-3354.pdf (accessed 28 December, 2015).