Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

А.Ю. Бушуев, Б.А. Фарафонов

12

Parameter optimization of solar battery multilink

construction with rope disclosure system

©

A.Yu

. Bushuev, B.A. Farafonov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The main purpose of the research is to choose optimal parameters of rope disclosure

system that ensure specified fixation succession of a multilink construction. The selection

of these parameters is done on the basis of the mathematical model analysis. We used

the criterion of least squares as an optimization indicator: mismatch of relative angles of

link rotation, calculated by the model and specified as solar battery assembling condi-

tions. Moreover, we took into account extra angle of rotation caused by rope defor-

mation. In this way, we obtained rope tensions from the solar battery disclosure ground

test which was carried out on the hovercraft stand.

Keywords:

mathematical model, rope disclosure system, multilink construction, solar

battery, optimization.

REFERENCES

[1]

Bakunin D.V., Borzykh S.V., Ososov N.S., Shchiblev Yu.N.

Matematicheskoe

modelirovanie — Mathematical modeling

, 2004, no. 6, vol. 16, pp. 86–92.

[2]

Ilyasova I.G.

Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo

Universiteta im. akademika S.P. Koroleva

Vestnik of the Samara State

Aerospace University,

2012, no. 4 (35), pp. 88–93.

[3]

Krylov A.V., Churilin S.A.

Vestnik MGTU im. N.E. Baumana. Seriya

Mashinostroenie — Herald of Bauman Moscow State Technical University. Ser.

Mechanical Engineering

, 2011, no. 1, pp. 106–111.

[4]

Yudintsev V.V.

Polet – The Flight

, 2012, no. 5, pp. 28–33.

[5]

Kuznetsova A.O.

Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo

universiteta im. akademika M.F. Reshetneva — Vestnik SibGAU

, 2005, no. 3,

pp. 135–138.

[6]

Panichkin V.I

. Izvestiya AN SSSR. MTT —Mech. Solids

, 1992, no. 4, pp. 183–190.

[7]

Yudintsev V.V.

Dinamika sistem tverdykh tel

[Dynamics of solid bodies

systems]. Samara, Samara State Aerospace University Publ., 2008.

[8]

Roy Featherstone Rigid Body Dynamics Algorithms

. Springer Science+Business

Media, LLC, 2008.

[9]

Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody

systems with changing structures for space applications.

Acta Astronautica

,

2011. doi: 10.1016/j.actaastro.2010.11.013

[10]

Narayana B.L., Nagaraj B.P., Nataraju B.S. Deployment Dynamics of Solar

Array with Body Rates.

Materials of

International ADAMS User Conference,

2000.

[11]

Bushuev

A.Yu

., Farafonov B.A.

Matematicheskoye modelirovaniye i chislennye

metody – Mathematical Modeling and Computational Methods

, 2014, vol. 2,

no. 2 (2), pp. 101–114.

[12]

Mengali G., Salvetti A., Specht B.

Multibody Analysis of Solar Array

Deployment using Flexible Bodies.

Universita di Pisa. Facoltà di Ingegneria,

Corso di Laurea in Ingegneria Aerospaziale, 2007.

[13]

Efanov A.M., Kovalevskiy V.P.

Teoriya mehanismov i mashin

[Theory of

mechanisms and machines]. Orenburg, Orenburg State University Publ., 2004.