А.Ю. Бушуев, Б.А. Фарафонов
12
Parameter optimization of solar battery multilink
construction with rope disclosure system
©
A.Yu. Bushuev, B.A. Farafonov
Bauman Moscow State Technical University, Moscow, 105005, Russia
The main purpose of the research is to choose optimal parameters of rope disclosure
system that ensure specified fixation succession of a multilink construction. The selection
of these parameters is done on the basis of the mathematical model analysis. We used
the criterion of least squares as an optimization indicator: mismatch of relative angles of
link rotation, calculated by the model and specified as solar battery assembling condi-
tions. Moreover, we took into account extra angle of rotation caused by rope defor-
mation. In this way, we obtained rope tensions from the solar battery disclosure ground
test which was carried out on the hovercraft stand.
Keywords:
mathematical model, rope disclosure system, multilink construction, solar
battery, optimization.
REFERENCES
[1]
Bakunin D.V., Borzykh S.V., Ososov N.S., Shchiblev Yu.N.
Matematicheskoe
modelirovanie — Mathematical modeling
, 2004, no. 6, vol. 16, pp. 86–92.
[2]
Ilyasova I.G.
Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo
Universiteta im. akademika S.P. Koroleva
—
Vestnik of the Samara State
Aerospace University,
2012, no. 4 (35), pp. 88–93.
[3]
Krylov A.V., Churilin S.A.
Vestnik MGTU im. N.E. Baumana. Seriya
Mashinostroenie — Herald of Bauman Moscow State Technical University. Ser.
Mechanical Engineering
, 2011, no. 1, pp. 106–111.
[4]
Yudintsev V.V.
Polet – The Flight
, 2012, no. 5, pp. 28–33.
[5]
Kuznetsova A.O.
Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo
universiteta im. akademika M.F. Reshetneva — Vestnik SibGAU
, 2005, no. 3,
pp. 135–138.
[6]
Panichkin V.I
. Izvestiya AN SSSR. MTT —Mech. Solids
, 1992, no. 4, pp. 183–190.
[7]
Yudintsev V.V.
Dinamika sistem tverdykh tel
[Dynamics of solid bodies
systems]. Samara, Samara State Aerospace University Publ., 2008.
[8]
Roy Featherstone Rigid Body Dynamics Algorithms
. Springer Science+Business
Media, LLC, 2008.
[9]
Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody
systems with changing structures for space applications.
Acta Astronautica
,
2011. doi: 10.1016/j.actaastro.2010.11.013
[10]
Narayana B.L., Nagaraj B.P., Nataraju B.S. Deployment Dynamics of Solar
Array with Body Rates.
Materials of
International ADAMS User Conference,
2000.
[11]
Bushuev
A.Yu., Farafonov B.A.
Matematicheskoye modelirovaniye i chislennye
metody – Mathematical Modeling and Computational Methods
, 2014, vol. 2,
no. 2 (2), pp. 101–114.
[12]
Mengali G., Salvetti A., Specht B.
Multibody Analysis of Solar Array
Deployment using Flexible Bodies.
Universita di Pisa. Facoltà di Ingegneria,
Corso di Laurea in Ingegneria Aerospaziale, 2007.
[13]
Efanov A.M., Kovalevskiy V.P.
Teoriya mehanismov i mashin
[Theory of
mechanisms and machines]. Orenburg, Orenburg State University Publ., 2004.