Методы прямого поиска в гибридных алгоритмах…
13
Работа выполнена при финансовой поддержке Министерства
образования и науки РФ (грант Президента РФ по поддержке науч-
ных исследований ведущих научных школ РФ, код НШ-4058.2014.8).
ЛИТЕРАТУРА
[1] Gao C., Zhao Z., Duan G. Robust actuator fault diagnosis scheme for satellite at-
titude control systems.
Journal of the Franklin Institute
, 2013, vol. 350, no. 9,
pp. 2560–2580.
[2] Medeiros J.A.C., Schirru R. Identification of nuclear power plant transients using
the Particle Swarm Optimization algorithm.
Annals of Nuclear Energy
, 2008,
vol. 35, no. 4, pp. 576–582.
[3] Ma J., Jiang J. Applications of fault detection and diagnosis methods in nuclear
power plants: A review.
Progress in Nuclear Energy
, 2011, vol. 53, pp. 255–
266.
[4] Лаврентьев М.М., Жаринов С.Ю., Зеркаль С.М., Соппа М.С. Вычислитель-
ная диагностика поверхностных характеристик протяженных цилиндриче-
ских объектов методами активной локации.
Сибирский журнал индустри-
альной математики
, 2002, т. V, № 1 (9), c. 105–113.
[5] Гончарский А.В., Романов С.Ю. О двух подходах к решению коэффици-
ентных обратных задач для волновых уравнений.
Журнал вычислительной
математики и математической физики,
2012, т. 52, № 2, с. 263–269.
[6] Goncharsky A.V., Romanov S.Y. Supercomputer technologies in inverse problems
of ultrasound tomography.
Inverse Problems
, 2013, vol. 29, no. 7, pp. 1–22.
[7] Wang Y., Yagola A.G., Yang C.
Optimization and regularization for computa-
tional inverse problems and applications
. Berlin, Heidelberg: Springer Verlag,
2010, XVIII, 351 p.
[8] Lippert R.A. Fixing multiple eigenvalues by a minimal perturbation.
Linear Al-
gebra and its Applications
, 2010, vol. 432, pp. 1785–1817.
[9] Bai Z.-J., Ching W.-K. A smoothing Newton’s method for the construction of a
damped vibrating system from noisy test eigendata.
Numerical Linear Algebra
with Applications
, 2009, vol. 16, no. 2, pp. 109–128.
[10] Kinelev V.G., Shkapov P.M., Sulimov V.D. Application of global optimization
to VVER-1000 reactor diagnostics.
Progress in Nuclear Energy,
2003, vol. 43,
no. 1–4, pp. 51–56.
[11] Karmitsa N., Bagirov A., Mäkelä M.M. Comparing different nonsmooth mini-
mization methods and software.
Optimization Methods & Software
, 2012,
vol. 27, no. 1, pp. 131–153.
[12] Floudas C.A., Gounaris C.E. A review of recent advances in global optimiza-
tion.
Journal of Global Optimization
, 2009, vol. 45, no. 1, pp. 3–38.
[13] Luz E.F.P., Becceneri J.C., de Campos Velho H.F. A new multiparticle colli-
sion algorithm for optimization in a high performance environment.
Journal of
Computational Interdisciplinary Sciences
, 2008, vol. 1, pp. 3–10.
[14] Rios-Coelho A.C., Sacco W.F., Henderson N. A. Metropolis algorithm com-
bined with Hooke-Jeeves local search method applied to global optimization.
Applied Mathematics and Computation
, 2010, vol. 217, no. 2, pp. 843–85.
[15] McKinnon K.I.M. Convergence of the Nelder-Mead simplex method to a non-
stationary point.
SIAM Journal of Control and Optimization
. 1999, vol. 9, no. 2,
pp. 148–158.
[16] Xiao H.F., Duan J.A. Multidirection-based Nelder–Mead method.
Optimiza-
tion: A Journal of Mathematical Programming and Operations Research
, 2014,
vol. 63, no. 7, pp. 1005–1026.