Методы прямого поиска в гибридных алгоритмах вычислительной диагностики гидромеханических систем - page 15

Методы прямого поиска в гибридных алгоритмах…
15
Methods of direct search in hybrid algorithms
of computing diagnostics of hydromechanical systems
© V.D. Sulimov, P.M. Shkapov
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article considers problems of computing diagnostics of hydromechanical systems. In
the developed mathematical models of the studied objects we used indirect diagnostic in-
formation which contained in the spectra of fluctuations of objects registered with the
regular systems. We formulated inverse spectral problem, in the solution of which we im-
plemented optimization approach. It was assumed that private criteria were continuous,
not everywhere differentiable multiextreme functions. Search of global decisions was
carried out using a new hybrid algorithms integrating stochastic algorithm of scanning
of variables space and determined
methods of direct local search
. Numerical examples of
model diagnosing of the heat carrier phase structure and of nuclear reactor plant equip-
ment are given.
Keywords
: computer diagnostics, inverse problem, criterion function, global optimiza-
tion, the Metropolis algorithm, regularization, hybrid algorithm.
REFERENCES
[1] Gao C., Zhao Z., Duan G. Robust actuator fault diagnosis scheme for satellite at-
titude control systems.
Journal of the Franklin Institute
, 2013, vol. 350, no. 9,
pp. 2560–2580.
[2] Medeiros J.A.C., Schirru R. Identification of nuclear power plant transients using
the Particle Swarm Optimization algorithm.
Annals of Nuclear Energy
, 2008,
vol. 35, no. 4, pp. 576–582.
[3] Ma J., Jiang J. Applications of fault detection and diagnosis methods in nuclear
power plants: A review.
Progress in Nuclear Energy
, 2011, vol. 53, pp. 255–
266.
[4] Lavrentyev M.M., Zharinov S.Yu., Zerkal S.M., Soppa M.S.
Sibirskiy zhurnal
industrialnoi matematiki
Journal of Applied and Industrial Mathematics
,
2002, vol. V, no. 1 (9), pp. 105–113.
[5] Goncharsky A.V., Romanov S.Yu.
Zhurnal vychislitelnoi matematiki i ma-
tematicheskoi fiziki — Computational Mathematics and Mathematical Physics,
2012, vol. 52, no. 2, pp. 263–269.
[6] Goncharsky A.V., Romanov S.Y. Supercomputer technologies in inverse prob-
lems of ultrasound tomography.
Inverse Problems
, 2013, vol. 29, no. 7, pp. 1–22.
[7] Wang Y., Yagola A.G., Yang C.
Optimization and regularization for computa-
tional inverse problems and applications
. Berlin, Heidelberg: Springer Verlag,
2010, XVIII, 351 p.
[8] Lippert R.A. Fixing multiple eigenvalues by a minimal perturbation.
Linear Al-
gebra and its Applications
, 2010, vol. 432, pp. 1785–1817.
[9] Bai Z.-J., Ching W.-K. A smoothing Newton’s method for the construction of a
damped vibrating system from noisy test eigendata.
Numerical Linear Algebra
with Applications
, 2009, vol. 16, no. 2, pp. 109–128.
[10] Kinelev V.G., Shkapov P.M., Sulimov V.D. Application of global optimization
to VVER-1000 reactor diagnostics.
Progress in Nuclear Energy,
2003, vol. 43,
no. 1–4, pp. 51–56.
1...,5,6,7,8,9,10,11,12,13,14 16
Powered by FlippingBook