Решение задачи параметрической оптимизации сетчатой цилиндрической конструкции
Инженерный журнал: наука и инновации
# 10·2017 11
Solving the problem of mesh cylindrical structure
parametric optimization
© O.A. Shteinbrekher, T.V. Burnysheva
Novokuznetsk institute (branch) of Kemerovo State University,
Novokuznetsk, 654041, Russia
The article considers the problem of optimal design of a mesh cylindrical structure. Such
structures are widely used in the aerospace industry. Optimal design of these structures al-
lows increasing the efficiency of their use, minimizing the mass, while observing the condi-
tions for strength and stability. The formulation of the problem of mesh construction optimal
design in general form is given. The application of various optimal design algorithms using
known analytical dependencies is considered. The optimization algorithm is based on the
simplex search method, where a partial R-predicate of the admissible domain is used to de-
scribe nonconvex smooth boundary sections. The results of solving the optimization problem
for a particular design by various methods and the results of calculating the stress-strain state
of the corresponding models are presented. The discrepancies in the results are due to the
different set of constraints used in the methods in question.
Keywords:
optimal design of structures, mesh cylindrical structure, minimum mass,
strength, stability, optimization algorithm, R-functions
REFERENCES
[1]
Vasilyev V.V., Barynin B.A., Razin A.F., Khalimanovich V.I.
Kompozity i
nanostruktury — Composites and Nanostructures
, 2009, no. 3, с. 38–50.
[2]
Azarov A.V.
Voprosy Oboronnoy tekhniki. Ser. 15. Kompozitnye
nemetallicheskie materialy v mashinostroenii — Problems of Defense
Technology. Ser. 15. Composite Non-Metallic Materials in Mechanical
Engineering
, 2007, no. 2 (147), pp. 3–7.
[3]
Kaledin V.O., Shteinbrekher O.A.
Nauchno-tekhnicheskiy vestnik Povolzhya —
Science and Technical Bulletin of the Volga Region
, 2016, no. 3, pp. 113–115.
[4]
Rvachev V.L.
Teoriya R-funktsiy i nekotorye ee prilozheniya
[Theory of R-functions
and some of its applications]. Kiev, Naukova dumka Publ., 1982, 552 p.
[5]
Shteinbrekher O.A. O reshenii zadachi optimizatsii setchatykh konstruktsiy
[Solving the problem of mesh structure optimization].
Trudy IV Vserossiyskoy
nauchno-prakticheskoy
konferentsii
s
mezhdunarodnym
uchastiem
“Modelirovanie i naukoemkie informatsionnye tekhnologii v tekhnicheskikh i
sotsialno-ekonomicheskikh sistemakh”.
Novokuznetsk, 12–15 aprelya 2016 g.
[Proceedings of IV All-Russia scientific-practical Conference with international
participation “Simulation and science-intensive information technologies in
engineering and socio-economic systems”. Novokuznetsk, April 12–15, 2016].
Novokuznetsk, Siberian State Industrial University Publ., 2016, pp. 149–154.
[6]
Iseeva O.A., Kravchenko Yu.S. Savitsky V.V., Krusheko G.G., Patskova E.G.
Vybor optimalnoy konfiguratsii pri proektirovanii anizogridnykh konstruktsiy
[Choosing the optimal configuration for the design of anisogrid structures].
Reshetnevskie chteniya: materialy XX Yubileynoy mezhdunarodnoy nauchno-
prakticheskoy konferentsii, posvyashchennoy pamyati generalnogo konstruktora
raketno-kosmicheskikh sistem akademika M.F. Reshetneva.
Krasnoyarsk, 9–12