Н.А. Лавров, С.С. Шереметьев
8
Инженерный журнал: наука и инновации
# 4·2017
Secondary effects in low-temperature heat exchangers
© N.A. Lavrov, S.S. Sheremetev
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article deals with the problem of secondary effects in low-temperature heat exchang-
ers. We carried out a computation-based study of the effect that environment heat gain
and axial thermal conductivity of a wall subjected to heat transfer have on the heat ex-
changer operation efficiency, for the purpose of determining the range of dimensionless
numbers within which the secondary effects influence the heat transfer considerably. We
studied steady-state operational modes of double-entry parallel flow and counter flow
double pipe heat exchangers. We supply classic and refined mathematical models of heat
transfer in a heat exchanger; we obtained analytical solutions for the differential equa-
tion systems supplied. We determined the values of dimensionless groups defining the
numbers of heat transfer units, modified Biot numbers and other factors identifying the
conditions under which neglecting secondary factors leads to the computational model
used losing its precision.
Keywords:
heat exchanger, axial thermal conductivity, number of (heat) transfer units,
environment heat gain, secondary effects, mathematical model
REFERENCES
[1]
Hausen H.
Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom
[Heat transfer in counter flow, parallel flow and cross flow]. Berlin, Springer-
Verlag Berlin Heidelberg, 1976, 432 p. [In Russ.: Hausen H.
Teploperedacha
pri protivotoke, pryamotoke i perekrestnom toke
. Moscow, Energoatomizdat
Publ., 1981, 384 p.].
[2]
Efimova L.N., Makarov A.M., Sukhov V.I. Sravnitelnyy analiz raschetnykh
modeley
nestatsionarnykh
protsessov
teploobmena
v
razlichnykh
teploobmennykh apparatakh [Comparative analysis of unsteady heat transfer
process computational models in various heat exchangers].
Sb. nauchn. trudov
NPO Kriogenmash
[Proc. of the public joint-stock company “Сryogenmash”],
1975, no. 17, pp. 81–92.
[3]
Danilenko T.K., Mikulin E.I., Kozlov V.N. Vliyanie teploprovodnosti stenki na
protsess teploobmena v kanale [Effect of the wall thermal conductivity on the
heat transfer process inside a channel].
Trudy MVTU
[Proc. of the MHTS].
1974, no. 193, pp. 160–165.
[4]
Shevich Yu.A.
Razrabotka i issledovanie vysokoeffektivnykh teploobmennykh
apparatov matrichnogo i planarnogo tipov dlya kompaktnykh nizkotemperaturnykh
sistem i ustanovok.
Diss. dokt. tekhn. nauk [Development and studies of highly
efficient matrix and planar type heat exchangers for compact low-temperature
systems and plants. Dr. eng. sc. diss.]. Moscow, 2008, 243 p.
[5]
Arkharov A.M.
Kriogennye sistemy
[Cryogenic systems].
Vol. 2:
Osnovy
proektirovaniya apparatov, ustanovok i sistem
[Foundations of unit, plant and
system design]. Smorodin A.I., ed. Moscow, Mashinostroenie Publ., 1999, 720 p.
[6]
Gareeva D.T., Lavrov N.A., Sheremetev S.S.
Delovoy zhurnal
NEFTEGAZ.RU—
NEFTEGAZ.RUBusiness Magazine
, 2016, iss. 5–6, pp. 86–88.
[7]
Arkharov A.M., Shishov V.V.
Vestnik MGTU im. N.E. Baumana. Seriya
Mashinostroenie — Herald of the Bauman Moscow State Technical University.
Series Mechanical Engineering
, 2013, no. 2 (91), pp. 84–97.