Previous Page  8 / 9 Next Page
Information
Show Menu
Previous Page 8 / 9 Next Page
Page Background

Н.А. Лавров, С.С. Шереметьев

8

Инженерный журнал: наука и инновации

# 4·2017

Secondary effects in low-temperature heat exchangers

© N.A. Lavrov, S.S. Sheremetev

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article deals with the problem of secondary effects in low-temperature heat exchang-

ers. We carried out a computation-based study of the effect that environment heat gain

and axial thermal conductivity of a wall subjected to heat transfer have on the heat ex-

changer operation efficiency, for the purpose of determining the range of dimensionless

numbers within which the secondary effects influence the heat transfer considerably. We

studied steady-state operational modes of double-entry parallel flow and counter flow

double pipe heat exchangers. We supply classic and refined mathematical models of heat

transfer in a heat exchanger; we obtained analytical solutions for the differential equa-

tion systems supplied. We determined the values of dimensionless groups defining the

numbers of heat transfer units, modified Biot numbers and other factors identifying the

conditions under which neglecting secondary factors leads to the computational model

used losing its precision.

Keywords:

heat exchanger, axial thermal conductivity, number of (heat) transfer units,

environment heat gain, secondary effects, mathematical model

REFERENCES

[1]

Hausen H.

Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom

[Heat transfer in counter flow, parallel flow and cross flow]. Berlin, Springer-

Verlag Berlin Heidelberg, 1976, 432 p. [In Russ.: Hausen H.

Teploperedacha

pri protivotoke, pryamotoke i perekrestnom toke

. Moscow, Energoatomizdat

Publ., 1981, 384 p.].

[2]

Efimova L.N., Makarov A.M., Sukhov V.I. Sravnitelnyy analiz raschetnykh

modeley

nestatsionarnykh

protsessov

teploobmena

v

razlichnykh

teploobmennykh apparatakh [Comparative analysis of unsteady heat transfer

process computational models in various heat exchangers].

Sb. nauchn. trudov

NPO Kriogenmash

[Proc. of the public joint-stock company “Сryogenmash”],

1975, no. 17, pp. 81–92.

[3]

Danilenko T.K., Mikulin E.I., Kozlov V.N. Vliyanie teploprovodnosti stenki na

protsess teploobmena v kanale [Effect of the wall thermal conductivity on the

heat transfer process inside a channel].

Trudy MVTU

[Proc. of the MHTS].

1974, no. 193, pp. 160–165.

[4]

Shevich Yu.A.

Razrabotka i issledovanie vysokoeffektivnykh teploobmennykh

apparatov matrichnogo i planarnogo tipov dlya kompaktnykh nizkotemperaturnykh

sistem i ustanovok.

Diss. dokt. tekhn. nauk [Development and studies of highly

efficient matrix and planar type heat exchangers for compact low-temperature

systems and plants. Dr. eng. sc. diss.]. Moscow, 2008, 243 p.

[5]

Arkharov A.M.

Kriogennye sistemy

[Cryogenic systems].

Vol. 2:

Osnovy

proektirovaniya apparatov, ustanovok i sistem

[Foundations of unit, plant and

system design]. Smorodin A.I., ed. Moscow, Mashinostroenie Publ., 1999, 720 p.

[6]

Gareeva D.T., Lavrov N.A., Sheremetev S.S.

Delovoy zhurnal

NEFTEGAZ.RU

NEFTEGAZ.RU

Business Magazine

, 2016, iss. 5–6, pp. 86–88.

[7]

Arkharov A.M., Shishov V.V.

Vestnik MGTU im. N.E. Baumana. Seriya

Mashinostroenie — Herald of the Bauman Moscow State Technical University.

Series Mechanical Engineering

, 2013, no. 2 (91), pp. 84–97.