Моделирование баллистической стойкости двойной стенки космических аппаратов …
Инженерный журнал: наука и инновации
# 11·2016 11
Ballistic spacecraft double wall simulation
at high speed collision
©
B.T. Dobritsa
1
, D.B. Dobritsa
2
1
Bauman Moscow State Technical University, Moscow, 105005, Russia
2
Federal State Unitary Enterprise NPO named after S.A. Lavochkin,
Moscow, Region,
Khimki town, 141400, Russia
The article considers an engineering simulation method to calculate the ballistic limit
depending on the double wall at the high-speed collision, which can be used in assessing
space vehicles structural elements stability under the man-made meteor particles influ-
ence, looks at the method calculations results for two model variants equivalent to space-
craft design standard elements. We selected as models the fuel tank fragments with pro-
tection and a radiator cross-section with the built-in thermal tube, analyzed the proposed
method application at increasing the bumper wall thickness for the fuel tank design that
gave a positive result. The article shows various approaches validity while assessing
spacecraft risks from the space debris or meteoroid impact damage - impact testing ex-
perimental results, numerical and engineering techniques.
Keywords:
ballistic equation, high-speed collision, spacecraft, screen protection, experi-
mental studies, numerical modeling.
REFERENCES
[1]
Dimitrienko Yu.I.
Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy
mekhaniki tverdykh sred
[Continuum Mechanics. In 4 vols. Vol. 4.
Fundamentals of solids]. Moscow, BMSTU Publ., 2014, 624 p.
[2]
Wilkins M.L.
Raschet uprugoplasticheskikh techeniy. Vychislitelnye metody v
gidrodinamike
[Calculation of elastic-plastic flow. Computational methods in
fluid dynamics]. Moscow, Mir Publ., 1967, pp. 212–263 [in Russ.].
[3]
Wilkins M.L.
Computer simulation of dynamic phenomena.
Springer-Verlag
Publ., Berlin-Heidelberg-New-York, 1999, 264 p.
[4]
Aleksandrov A.A., Dimitrienko Yu.I.
Matematicheskoe modelirovanie i
chislennye metody — Mathematical Modeling and Computational Methods
,
2014, no. 1 (1), pp. 3–4.
[5]
Dimitrienko Yu.I., Dimitrienko I.D.
Inzhenernyy zhurnal: nauka i innovatsii
—
Engineering Journal: Science and Innovation
, 2014, no. 5 (29). Available at:
http://engjournal.ru/search/author/40/page1.html[6]
Dimitrienko Yu.I., Dzaganiya
A.Yu., Belenovskaya Yu.V., Vorontsova M.A.
Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the
Bauman Moscow State Technical University. Series: Natural Sciences,
2008,
no. 4, pp. 100–117.
[7]
Gerasimov A.V., Pashkov S.V., Khristenko Yu.F.
Vestnik Tomskogo
Gosudarstvennogo Universiteta. Matematika i Mekhanika —
Bulletin of the Tomsk
State University. Mathematics and Mechanics
, 2011, no. 4 (16), pp. 70–78.
[8]
Dobritsa B.T., Dobrica D.B.
Vestnik Tomskogo Gosudarstvennogo Universiteta.
Matematika i Mekhanika —
Bulletin of the Tomsk State University. Mathematics
and Mechanics
, 2015, no. 4 (36), pp. 64–70.
[9]
Christiansen E.L. Design and performance equations for advanced meteoroid
and debris shields.
International Journal of Impact Engineering
, 1993, vol. 14,
pp. 145–156.