Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

Моделирование баллистической стойкости двойной стенки космических аппаратов …

Инженерный журнал: наука и инновации

# 11·2016 11

Ballistic spacecraft double wall simulation

at high speed collision

©

B.T. Dobritsa

1

, D.B. Dobritsa

2

1

Bauman Moscow State Technical University, Moscow, 105005, Russia

2

Federal State Unitary Enterprise NPO named after S.A. Lavochkin,

Moscow, Region,

Khimki town, 141400, Russia

The article considers an engineering simulation method to calculate the ballistic limit

depending on the double wall at the high-speed collision, which can be used in assessing

space vehicles structural elements stability under the man-made meteor particles influ-

ence, looks at the method calculations results for two model variants equivalent to space-

craft design standard elements. We selected as models the fuel tank fragments with pro-

tection and a radiator cross-section with the built-in thermal tube, analyzed the proposed

method application at increasing the bumper wall thickness for the fuel tank design that

gave a positive result. The article shows various approaches validity while assessing

spacecraft risks from the space debris or meteoroid impact damage - impact testing ex-

perimental results, numerical and engineering techniques.

Keywords:

ballistic equation, high-speed collision, spacecraft, screen protection, experi-

mental studies, numerical modeling.

REFERENCES

[1]

Dimitrienko Yu.I.

Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy

mekhaniki tverdykh sred

[Continuum Mechanics. In 4 vols. Vol. 4.

Fundamentals of solids]. Moscow, BMSTU Publ., 2014, 624 p.

[2]

Wilkins M.L.

Raschet uprugoplasticheskikh techeniy. Vychislitelnye metody v

gidrodinamike

[Calculation of elastic-plastic flow. Computational methods in

fluid dynamics]. Moscow, Mir Publ., 1967, pp. 212–263 [in Russ.].

[3]

Wilkins M.L.

Computer simulation of dynamic phenomena.

Springer-Verlag

Publ., Berlin-Heidelberg-New-York, 1999, 264 p.

[4]

Aleksandrov A.A., Dimitrienko Yu.I.

Matematicheskoe modelirovanie i

chislennye metody — Mathematical Modeling and Computational Methods

,

2014, no. 1 (1), pp. 3–4.

[5]

Dimitrienko Yu.I., Dimitrienko I.D.

Inzhenernyy zhurnal: nauka i innovatsii

Engineering Journal: Science and Innovation

, 2014, no. 5 (29). Available at:

http://engjournal.ru/search/author/40/page1.html

[6]

Dimitrienko Yu.I., Dzaganiya

A.Yu

., Belenovskaya Yu.V., Vorontsova M.A.

Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the

Bauman Moscow State Technical University. Series: Natural Sciences,

2008,

no. 4, pp. 100–117.

[7]

Gerasimov A.V., Pashkov S.V., Khristenko Yu.F.

Vestnik Tomskogo

Gosudarstvennogo Universiteta. Matematika i Mekhanika —

Bulletin of the Tomsk

State University. Mathematics and Mechanics

, 2011, no. 4 (16), pp. 70–78.

[8]

Dobritsa B.T., Dobrica D.B.

Vestnik Tomskogo Gosudarstvennogo Universiteta.

Matematika i Mekhanika —

Bulletin of the Tomsk State University. Mathematics

and Mechanics

, 2015, no. 4 (36), pp. 64–70.

[9]

Christiansen E.L. Design and performance equations for advanced meteoroid

and debris shields.

International Journal of Impact Engineering

, 1993, vol. 14,

pp. 145–156.