Previous Page  15 / 16 Next Page
Information
Show Menu
Previous Page 15 / 16 Next Page
Page Background

Численное моделирование теплового расширения композиционных материалов…

15

Numerical simulation of composite material thermal

expansion by homogenization method

© Yu.I. Dimitrienko, E.A. Gubareva, S.V. Sborschikov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article considers a variant of the asymptotic homogenization method for calculation

of effective thermal expansion coefficients of composite materials with thermoelastic

properties.

We formulate

problems of local thermoelasticity over a periodicity cell of

composites

.

A variational formulation of the thermoelasticity problem over a periodicity

cell is proposed. A finite element method for computational solving of these problems of

thermoelasticity is applied

.

For software implementation of the finite element method we

use the software package developed by the Scientific and Educational Center of the

BMSTU.

We also give

examples of numerical solution of the local problems of

thermoelasticity for composites based on ceramic fibers and the polymer matrix. Effective

coefficients of thermal expansion for composite materials with spatial arrangement of

ceramic fibers and a polymer matrix were calculated for different temperatures.

We

show that processes of thermal decomposition of polymer matrix result in nonmonotonic

dependence of the thermal expansion coefficient on temperature. The proposed algorithm

allows to calculate

the thermal expansion coefficients for composites with almost any

structures of fiber reinforced matrices undergoing physicochemical transformations at

high temperatures. Unlike a large number of the well-known approximate methods for

calculating thermal expansion coefficients the proposed method allows to obtain the

mathematically accurate values for these coefficients.

Ключевые слова:

multilayer thin shell, asymptotic homogenization method, asymptotic

theory of shells

.

REFERENCES

[1]

Christensen R.M.

Mechanics of Composite Materials

. Wiley-Interscience, New

York, 1979, 348 p. [In Russian: Christensen R. M. Vvedenie v mekhaniku

kompozitov. Moscow, Mir Publ., 1982, 336 p.].

[2]

Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A.

Prostranstvenno

armirovannye kompozitsionnye materialy

[Spatially Reinforced Composite

Materials]. Moscow, Mashinostroenie Publ., 1987, 224 p.

[3]

Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Y.

Nauka i obrazovanie: electronnyy

nauchno-tekhnicheskiy zhurnal – Science and Education: Electronic Scientific

and Technical Journal

, 2015, no. 2, pp. 197–215.

[4]

Zhiguo Ran, Ying Yan, Jianfeng Li, Zhongxing Qi, Lei Yang.

Chinese Journal

of Aeronautics,

October 2014, vol. 27, iss. 5, pp. 1180–1187.

[5]

Z. Haktan Karadeniz, Dilek Kumlutas.

Composite Structures

, March 2007, vol. 78,

iss. 1, pp. 1–10.

[6]

Rupnowskia P., Gentza M., Sutterb J.K., Kumosaa M.

Composites Part A:

Applied Science and Manufacturing

, March 2005, vol. 36, iss. 3, pp. 327–338.

[7]

Bakhvalov N.S., Panasenko G.P.

Homogenisation: Averaging Processes in

Periodic Media. Mathematical Problems in the Mechanics of Composite

Materials.

Springer Publ., 1989, 352 p. [In Russian: Bakhvalov N.S., Panasenko

G.P. Osrednenie protsessov v periodicheskikh sredakh. Moscow, Nauka Publ.,

1984, 352 p.].