Previous Page  17 / 18 Next Page
Information
Show Menu
Previous Page 17 / 18 Next Page
Page Background

Параметрическое исследование взаимодействия частиц конденсированной фазы…

Инженерный журнал: наука и инновации

# 8·2017 17

Parametric study of condensed phase particles interaction

with a high-enthalpy air flow

in a co-current combustion chamber

© A.V. Voronetskiy

1

, V.I Smolyaga

2

, K.Yu. Arefiev

1

,

A.A Gusev

1

, M.A.Abramov

1

1

Bauman Moscow State Technical University, Moscow, 105005, Russia

2

Joint-stock company Scientific-Production Association SPLAV, Tula, 300004, Russia

The article considers mathematical modeling working process problems in perspective

energy-power plants for intra-atmospheric aircraft using fuel based on high-metallized

energy-intensive compositions (VEK). The mathematical model developed and realized in

the specialized module allows us to adapt the software package ANSYS Fluent for simu-

lating a two-phase gas-dynamic flow taking into account the condensed BEC particles

combustion in a high-enthalpy air stream. The article gives the parametric calculations,

which result in obtaining some regularity in the particles combustion completeness coef-

ficient and its changing dependence on the ratio of components, two-phase mixing condi-

tions, and empirical constants in the combustion law. The article considers the cases of

particle feeding both from the combustion chamber wall and along the flow axis. The ob-

tained data can be used to refine the condensed particles combustion empirical laws, to

predict the physical and chemical processes completeness in real chambers and to devel-

op recommendations for improving the work process efficiency in advanced power-

generating plants.

Keywords

: mathematical modeling, condensed fuel particles, air flow, mixture formation

scheme, empirical combustion law

REFERENCES



Varenykh N.M., Shabunin A.I., Sarabev V.I., et al.

Boepripasy i spetskhimiya

Ammunition and special chemistry

, 2013, no. 1, pp. 44–50.



Bakulin V.N., Dubovkin N.F., Kotov V.N., Sorokin V.A., Frantskevich V.P.,

Yanovskiy L.S.

Energoemkie goryuchie dlya aviatsionnykh i raketnykh

dvigateley

[Energy-intensive fuels for aviation and rocket engine]

.

Moscow,

Fizmatlit Publ., 2009, 400 p.



Kurth G., Bauer C., Hopfe N. Performance Assessment for a Throttlable Duct-

ed Rocket Powered Lower Tier Interceptor.

51st AIAA/SAE/ASEE. Proc. of

Joint Propulsion Conference, Propulsion and Energy Forum

,

USA, Orlando,

27–29 July 2015 (AIAA 2015-4234)

, pp. 6407–6423.



Aleksandrov V.N., Bytskevich V.M., Verkholomov V.K., et al.

Integralnye

pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh. Osnovy

teorii i rascheta

[Integral ramjet air-jet engines on solid fuels. Fundamentals of

theory and calculation]. L.S. Yanovskiy, ed. Moscow, Akademkniga Publ.,

2006. 343 p.



Averkov I.S., Aleksandrov V.Yu., Arefev K.Yu., Voronetskiy A.V., Guskov O.V.,

Prokhorov A.N., Yanovsky L.S.

Teplofizika vysokikh temperatur

High Temper-

ature

, 2016, no. 6, pp. 882–891.



Voronetskiy A.V.

Nauka i obrazovanie: ehlektronnoe nauchno-tekhnicheskoe

izdanie — Science and Education: Scientific Publication

, 2016, no. 1. Avai-

lable at:

http://technomag.bmstu.ru/doc/830993.html

(accessed May 15, 2017).