Система криообеспечения высокотемпературной сверхпроводимости устройств…
Инженерный журнал: наука и инновации
# 8·2017 25
Cryogenic supply system for high-temperature supercon-
ductivity devices (SCR 001)
© V.V. Kostyuk
1
, B.I. Katorgin
1
, V.P. Firsov
2
, K.L. Kovalev
2
,
Yu.A. Ravikovich
2
, I.V. Antyukhov
2
, S.F. Timushev
2
,
M.M. Vereschagin
4
, D.P. Kholobtsev
2
, Yu.I. Ermilov
2
,
N.G. Balaboshko
2
, Yu.A. Gapeev
2
, A.S. Lesovnikov
2
,
A.S. Sychkov
3
, K.A. Modestov
2
1
Russian Academy of Sciences, Moscow, 117334, Russia
2
Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
3
GROUP EKSPLOTEKX Ltd, Moscow, 125130, Russia
4
VelisHolod Ltd, Moscow, 125130, Russia
Creation of an autonomous and efficient cryogenic supply system with a resource of con-
tinuous operation of at least 30,000 hours for use in high-current devices (cables, electric
motors, generators, transformers, etc.) using high-temperature superconductivity is a key
task for the widespread introduction of promising technologies in industry.
The study gives the results of the work on creation of a cryogenic supply system for SCR 001
with a cooling capacity of 1,5 ... 2,5 kW at a temperature of 65K for local and distributed cry-
ogenic systems. SCR 001 circulates liquid nitrogen at a temperature of 65… 75K in a closed
circuit of cooling superconductors and ensures the operation of electric motors, generators,
etc. The refrigerator KR 001 has been built with a cooling capacity of 1...2,5 kW at 65 K. The
refrigerator operates by the gas refrigerating inverted Brighton cycle with radial tur-
bomachines. The design features of the cryorefrigerator are as follows: neon is the work-
ing fluid in the gas circuit; turbochargers and turboexpander have gas-dynamic bear-
ings; cooling of the working fluid (neon) after compression occurs in compact plate-
finned end heat exchangers with the help of antifreeze, and cooling of antifreeze is due to
the air in the heat exchanger by means of fans.
Keywords:
high-temperature superconductivity, cryogenic system, cryorefrigerator, re-
frigerating inverted Brighton cycle, radial turbomachines
REFERENCES
[1]
Antyukhov I.V., Volkov E.P., Karpyshev A.V., Kostyuk V.V., Firsov V.P.
Teploobmen i gidrodinamika v sistemakh krioobespecheniya silovykh VTSP
kabeley [Heat transfer and hydrodynamics in cryogenic HTS power cable
systems].
Innovatsionnye tekhnologii v energetike, RAN
[Innovative
technologies in the energetics, RAS]. Moscow, Nauka Publ., 2010, pp. 99–130.
[2]
Hirari H.B. et al.
Advances in Cryogenic Engineering
, 2010, vol. 55, pp. 895–902.
[3]
Mikulin E.I., Marfenina I.V., Arkharov A.M., eds.
Tekhnika nizkikh temperatur
[Low temperature technique]. Moscow, Energiya Publ., 1975.
[4]
Yepifanova V.I.
Nizkotemperaturnye radialnye turbodetandery
[Low
temperature radial turbine expanders]. Moscow, Mashinostroenie Publ., 1974.
[5]
Hellström F. Numerical computations of the unsteady flow in a radial turbine.
Technical Reports from Royal Institute of Technology KTH Mechanics.
March
2008, SE-100 44, Stockholm, Sweden.
[6]
Software package for gas and fluid flow simulation FlowVision
. Version 2.5.0.
Manual CAPVIDIA
, 1999–2007, Leuven, Belgium.