Previous Page  7 / 7
Information
Show Menu
Previous Page 7 / 7
Page Background

Анализ рабочих характеристик гофрированных мембран…

Инженерный журнал: наука и инновации

# 11·2016 7

Corrugated membrane performance analysis

in nonlinear deformation process

© S.S. Gavrushin, S.A. Podkopaev

Bauman Moscow State Technical University, 105005 Moscow, Russia

Corrugated membranes are widely used in instrument-making as elastic elements. Devic-

es reliability and quality depend on the accuracy of elastic elements calculation. So, cor-

rugated membranes calculation is the problem of current interest. We used parameter

continuation and parameter subspace change methods for corrugated membranes calcu-

lation. The algorithm is implemented in С program. The membrane elastic characteristic

and deformed shape of its meridian are the results of the calculation. The isolated elastic

characteristic curve calculation algorithm is shown as well. Thus, the proposed calcula-

tion technique appears to be effective and can be recommended for the analysis of a wide

range of elastic elements.

Keywords

: elastic element, thin-walled shell, large changes, nonlinear deformation.

REFERENCES



Andreeva L.E., Ponomarev S.D.

Raschet uprugikh elementov mashin i priborov

[Calculation of elastic elements of machines and devices]. Moscow, Mashino-

stroenie Publ., 1980, 326 p.



Grigolyuk E.I., Lopanitsyn E.A.

Konechnye progiby, ustoichivost i zakritich-

eskoe povedenie tonkikh pologikh obolochek

[Thin-walled shallow shells finite

deflections, stability and post-buckling behaviour]. Moscow, MSTU “MAMI”

Publ., 2004, 162 p.



Popov E.P.

Inzhenernyi sbornik — Engineering collection

, 1948, no. 5, pp. 62–92.



Bich D.H., Tung H.V. Non-linear axisymmetric response of functionally graded

shallow spherical shells under uniform external pressure including temperature

effects.

Int.

J. Nonlinear Mechanics,

2011, no. 46(9), pp. 1195–1204.



Li Q.S., Liu J., Tang J., Buckling of shallow spherical shells including the effects

of transverse shear deformation.

Int. J. Mechanical Sciences

, 2003, no. 45 (9),

pp. 1519–1529.



Gavrushin S.S., Baryshnikova O.O., Boriskin O.F.

Chislennyi analiz elementov

konstruktsiy mashin i priborov

[Devices and machines elements numerical analy-

sis]. Moscow, BMSTU Publ., 2014, 479 p.



Gavrushin S.S.

Matematicheskoe modelirovanie i chislennye metody — Mathe-

matical Modeling and Computational Methods,

2014, no. 1, pp. 115–130.



Gavrushin S.S.

Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie —

Proceedings of Higher Educational Institutions. Machine Building

,

2011,

no. 12, pp. 22–32.



Valishvili N.V.

Metody rascheta obolochek vrashcheniya na ETsVM

[Methods

for calculating the shells of revolution on a computer]. Moscow, Mashino-

stroenie Publ., 1976, 278 p.



Feodosiev V.I.

Prikladnaya matematika i mekhanika — Journal of Applied

Mathematics and Mechanics

, 1945, no. 9, pp. 389–412.

Gavrushin S.S.,

Dr. Sci. (Eng.), Professor, Head of the Department of Computer Sys-

tems of Manufacturing Automation, Bauman Moscow State Technical University.

e-mail:

gss@bmstu.ru

Podkopaev S.A.,

Cand. Sci. (Eng.), Assoc. Professor of the Department of Computer

Systems of Manufacturing Automation, Bauman Moscow State Technical University.

e-mail:

podkopaevsa@bmstu.ru