Ю.И. Димитриенко, Ю.В. Шпакова, И.О. Богданов, С.В. Сборщиков
14
Моdeling the process of multilevel liquid binder filtration
in a textile composite manufactured by RTM technology
© Yu.I. Dimitrienko, Yu.V. Shpakova,
I.O. Bogdanov, S.V. Sborschikov
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article considers the mathematical model of a multilevel filtration process of liquid
binder in a textile composite material manufactured by RTM technology. The model de-
scribes filtration process on the two structural levels: the macroscopic motion of the liq-
uid binder on the frame of the composite structure and the motion of the binder within the
individual cell of textile composite periodicity on a microscopic level.
Both three-
dimensional filtration problems are solved numerically using the finite element method.
The presented results of numerical modeling the filtration process of the liquid binder in
a textile material revealed characteristic features of the binder motion
.
The developed
model of multilevel filtration may serve as a basis for the optimization of technological
processes of manufacturing structural elements made of composite materials using the
RTM technology.
Keywords:
composites, multilevel filtration process, RTM method, asymptotic averaging
method, periodicity cell, textile composite, finite element method, numerical simulation,
pore pressure.
REFERENCES
[1]
Goncharov V.A., Raskutin A.E.
Trudy VIAM – Electronic journal “Proceedings
of VIAM”
, 2015, no. 7. doi:
dx.doi.org/10.18577/2307-6046-2015-0-7-11-
11(accessed 16 November, 2015) .
[2]
Goncharov V.A., Fedotov
M.Yu., Sorokin K.V., Raskutin A.E.
Spravochnik.
Inzhenernyy zhurnal – Handbook. Engineering Journal
, 2013, no. 12, pp. 24–28.
[3]
Dushin M.I., Khrulkov A.V., Mukhametov R.R., Chursova L.V.
Aviatsionnye
materialy i technologii – Aviation materials and technology,
2012, no. 1, pp. 18–26.
[4]
Muskat M.
The flow of homogeneous fluid through porous media
. Ann Arbor,
Michigan, J.W. Edwards Inc. Publ., 1946, 753 p. [In Russian: Masket M.
Techenie odnorodnykh zhidkostey v poristoy srede. Moscow, Izhevsk, NIC
“Regulyarnaya i khaoticheskaya dinamika” Publ., 2004, 628 p.].
[5]
Clifford K.
Gas
Transport in Porous Media. Theory and Applications of
Transport in Porous Media.
Vol. 20. Springer, 2006, 444 p.
[6]
Coussy Olivier.
Mechanics and Physics of Porous Solids
. John Wiley and Sons
Ltd., 2010, 281 p.
[7]
De Boer R.
Trends in Continuum Mechanics of Porous Media. Theory and
Applications of Transport in Porous Media.
Vol. 18. Springer Publ., 2005, 279 p.
[8]
Espedal M.S., Fasano A., Mikelic A.
Filtration in Porous Media and Industrial
Application
. Springer, 2000, 218 p.
[9]
Ingham D.B., Pop I.
Transport Phenomena in Porous Media
. Elsevier, Ltd.,
2005, vol. 3, 476 p.
[10]
Sanchez-Palencia E.
Non-homogeneous media and vibration theory. Lecture
Notes in Physics
. Vol. 3. Berlin, Springer Publ., 1980, 398 p. [In Russian:
Neodnorodnye sredy i teoriya kolebaniy. Moscow, Mir Publ., 1984].
[11]
Bakhvalov N.S., Panasenko G.P.
Osrednenie protsessov v periodicheskikh
sredakh
[
Averaging processes in periodic media
]. Moscow, Nauka Publ., 1984,
352 p.