Previous Page  14 / 16 Next Page
Information
Show Menu
Previous Page 14 / 16 Next Page
Page Background

Ю.И. Димитриенко, Ю.В. Шпакова, И.О. Богданов, С.В. Сборщиков

14

Моdeling the process of multilevel liquid binder filtration

in a textile composite manufactured by RTM technology

© Yu.I. Dimitrienko, Yu.V. Shpakova,

I.O. Bogdanov, S.V. Sborschikov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article considers the mathematical model of a multilevel filtration process of liquid

binder in a textile composite material manufactured by RTM technology. The model de-

scribes filtration process on the two structural levels: the macroscopic motion of the liq-

uid binder on the frame of the composite structure and the motion of the binder within the

individual cell of textile composite periodicity on a microscopic level.

Both three-

dimensional filtration problems are solved numerically using the finite element method.

The presented results of numerical modeling the filtration process of the liquid binder in

a textile material revealed characteristic features of the binder motion

.

The developed

model of multilevel filtration may serve as a basis for the optimization of technological

processes of manufacturing structural elements made of composite materials using the

RTM technology.

Keywords:

composites, multilevel filtration process, RTM method, asymptotic averaging

method, periodicity cell, textile composite, finite element method, numerical simulation,

pore pressure.

REFERENCES

[1]

Goncharov V.A., Raskutin A.E.

Trudy VIAM – Electronic journal “Proceedings

of VIAM”

, 2015, no. 7. doi:

dx.doi.org/

10.18577/2307-6046-2015-0-7-11-

11(accessed 16 November, 2015) .

[2]

Goncharov V.A., Fedotov

M.Yu.

, Sorokin K.V., Raskutin A.E.

Spravochnik.

Inzhenernyy zhurnal – Handbook. Engineering Journal

, 2013, no. 12, pp. 24–28.

[3]

Dushin M.I., Khrulkov A.V., Mukhametov R.R., Chursova L.V.

Aviatsionnye

materialy i technologii – Aviation materials and technology,

2012, no. 1, pp. 18–26.

[4]

Muskat M.

The flow of homogeneous fluid through porous media

. Ann Arbor,

Michigan, J.W. Edwards Inc. Publ., 1946, 753 p. [In Russian: Masket M.

Techenie odnorodnykh zhidkostey v poristoy srede. Moscow, Izhevsk, NIC

“Regulyarnaya i khaoticheskaya dinamika” Publ., 2004, 628 p.].

[5]

Clifford K.

Gas

Transport in Porous Media. Theory and Applications of

Transport in Porous Media.

Vol. 20. Springer, 2006, 444 p.

[6]

Coussy Olivier.

Mechanics and Physics of Porous Solids

. John Wiley and Sons

Ltd., 2010, 281 p.

[7]

De Boer R.

Trends in Continuum Mechanics of Porous Media. Theory and

Applications of Transport in Porous Media.

Vol. 18. Springer Publ., 2005, 279 p.

[8]

Espedal M.S., Fasano A., Mikelic A.

Filtration in Porous Media and Industrial

Application

. Springer, 2000, 218 p.

[9]

Ingham D.B., Pop I.

Transport Phenomena in Porous Media

. Elsevier, Ltd.,

2005, vol. 3, 476 p.

[10]

Sanchez-Palencia E.

Non-homogeneous media and vibration theory. Lecture

Notes in Physics

. Vol. 3. Berlin, Springer Publ., 1980, 398 p. [In Russian:

Neodnorodnye sredy i teoriya kolebaniy. Moscow, Mir Publ., 1984].

[11]

Bakhvalov N.S., Panasenko G.P.

Osrednenie protsessov v periodicheskikh

sredakh

[

Averaging processes in periodic media

]. Moscow, Nauka Publ., 1984,

352 p.