Background Image
Previous Page  7 / 11 Next Page
Information
Show Menu
Previous Page 7 / 11 Next Page
Page Background

Рост давления в плоском канале при замерзании теплоносителя

7

После интегрирования:

2

2

Fo

,

2

k

Fo,

А

 

где

2

2 .

A

k

Более точное аналитическое решение может быть получено, если

температуру не задавать линейно распределенной в твердой фазе, а

определять из решения уравнения теплопроводности [7]. В этом слу-

чае

Fo

  

.

(10)

Коэффициент

находят из трансцендентного уравнения

2

2

2

0

exp

4

2

exp

4

K

d





 

.

(11)

Уравнение (9) принимает при этом вид:

3

ст

2

60

Fo 1

1

1

E k

p

k

  



.

(12)

Давление принимает максимальное значение при полном замер-

зании жидкости. Используя закон сохранения массы жидкости до и

после ее кристаллизации, можно записать:

ж ж0 т

пр

,

bh

b

  

или

ж0

пр

.

h

k

 

(13)

Здесь

пр

— приведенная толщина слоя твердой фазы;

ж0

h

начальная высота щели, занимаемая жидкой фазой.

После подстановки соотношения (13) в уравнение (6) получаем

для случаев жесткого закрепления верхней пластины при отсутствии

деформации нижней пластины:

3

cт ж0

max

2

60

1

1

1

E k h

p

k

k

 



.

(14)