Е.Ю. Локтионов, Ю.С. Протасов, Ю.Ю. Протасов
14
[5]
Katsurayma H., Komurasaki K., Arakawa Y. Pulse-Laser Powered Orbital
Launcher. Duarte F.J., ed.
Laser Pulse Phenomena and Applications
. InTech,
2010, pp. 3–18.
[6]
Yeates P., Kennedy E.T. Plasma dynamics of a confined extreme ultraviolet
light source.
Physics of Plasmas
, 2010, vol. 17, no. 9, p. 093104-8.
[7]
Theobald W., Ovchinnikov V., Ivancic S., Eichman B., Nilson P.M., Delettrez J.A.,
Yan R., Li G., Marshall F.J., Meyerhofer D.D., Myatt J.F., Ren C., Sangster T.C.,
Stoeckl C., Zuegel J.D., Van Woerkom L., Freeman R.R., Akli K.U., Giraldez E.,
Stephens R.B. High-intensity laser-plasma interaction with wedge-shaped-cavity
targets.
Physics of Plasmas
, 2010, vol. 17, no. 10, p. 103101-7.
[8]
Yeates P., Kennedy E.T. Spectroscopic, imaging, and probe diagnostics of laser
plasma plumes expanding between confining surfaces.
Journal of Applied
Physics
, 2010, vol. 108, no. 9, p. 093306-12.
[9]
Панченко А.Н., Тарасенко В.Ф., Шулепов М.А., Любченко Ф.Н., Феде-
нев А.В. Исследование влияния лазерной абляции на формирование
механического импульса плазмы капиллярного разряда.
Письма в ЖТФ
,
2009, т. 35, № 3, с. 53–59.
[10]
Sasoh A. In-tube rocket propulsion using repetitive laser pulses.
Journal of
Thermal Science
, 2011, vol. 20, no. 3, pp. 201–204.
[11]
Kleine H., Vo Le C., Takehara K., Etoh T. Time-resolved visualization of
shock–vortex systems emitted from an open shock tube.
Journal of
Visualization
, 2010, vol. 13, no. 1, pp. 33–40.
[12]
Ushio M., Komurasaki K., Kawamura K., Arakawa Y. Effect of laser
supported detonation wave confinement on termination conditions.
Shock
Waves
, 2008, vol. 18, no. 1, pp. 35–39.
[13]
Zeng X., Mao S.S., Liu C., Mao X., Greif R., Russo R.E. Plasma diagnostics
during laser ablation in a cavity.
Spectrochimica Acta Part B: Atomic
Spectroscopy
, 2003, vol. 58, no. 5, pp. 867–877.
[14]
Zeng X., Mao X., Mao S.S., Wen S.-B., Greif R., Russo R.E. Laser-induced
shockwave propagation from ablation in a cavity.
Applied Physics Letters
,
2006, vol. 88, no. 6, p. 061502.
[15]
Katsurayama H., Komurasaki K., Hirooka Y., Mori K., Arakawa Y. Numerical
Analyses of Exhaust and Refill Processes of a Laser Pulse Jet.
Journal of
Propulsion and Power
, 2008, vol. 24, no. 5, pp. 999–1006.
[16]
Mori K., Komurasaki K., Arakawa Y. Nozzle Scale Optimum for the Impulse
Generation in a Laser Pulsejet.
Journal of Spacecraft and Rockets
, 2004, vol.
41, no. 5, pp. 887–889.
[17]
Hirooka Y., Katsurayama H., Mori K., Inoue C., Komurasaki K., Arakawa Y.
Nozzle Performance of a RP Laser Thruster.
39th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit
. 20–23/07/2003. Huntsville, AIAA,
2003, p. AIAA-2003-4429.
[18]
Протасов Ю.Ю. Лазерно-плазменный инжектор.
Приборы и техника
эксперимента
, 2003, № 2, с. 60–64.
[19]
Ageev V.P., Barchukov A.I., Bunkin F.V., Gorbunov A.A., Hudyakov V.M.,
Konov V.I., Korobeinikov V.P., Putyatin B.V. Some characteristics of the
laser multi-pulse explosive type jet thruster.
Acta Astronautica
, 1981, vol. 8,
no. 5–6, pp. 625–641.
[20]
Булгакова Н.М. Исследование динамики и механизмов лазерной абляции
в режимах милли-, нано- и фемтосекундных импульсов. Дис. … д-ра
физ.-мат. наук. Новосибирск, 2002, 388 с.
[21]
Zhou Y., Tao S., Wu B. Backward growth of plasma induced by long
nanosecond laser pulse ablation.
Applied Physics Letters
, 2011, vol. 99, no. 5,
p. 051106.