О верификации методов определения импульса отдачи…
21
[68]
Sinko J.E., Pakhomov A.V. From Shadowgraph to Monochromatic Schlieren:
Time-Resolved Imaging of Dim Laser-Induced Phenomena in the Presence of
Saturating Plasma Emission.
Fifth International Symposium on Beamed Energy
Propulsion
. Kailua-Kona (Hawaii), AIP, 2008, pp. 121–130.
[69]
Lin J.
Time-resolved imaging for the dynamic study of ablative laser
propulsion.
Dis. …
Ph. D. Huntsville, 2004, 140 p.
[70] Локтионов Е.Ю., Овчинников А.В., Протасов Ю.Ю., Ситников Д.С.
Экспериментально-диагностический модуль для сверхскоростной комби-
нированной интерферометрии процессов взаимодействия ультракоротких
лазерных импульсов с конденсированными средами в вакууме.
Приборы и
техника эксперимента
, 2010, № 3, c. 104–110.
[71] Mori K., Anju K., Sasoh A., Zaretsky E. Acceleration history in laser-ablative
impulse measured using velocity interferometer (VISAR).
High-Power Laser
Ablation VI
. Taos, NM, USA, SPIE, 2006, p. 626125-8.
[72]
Sasoh A., Mori K., Anju K., Suzuki K., Shimono M., Sawada K. Diagnostics
and Impulse Performance of Laser-Ablative Propulsion.
Fifth International
Symposium on Beamed Energy Propulsion
. Kailua-Kona (Hawaii), AIP, 2008,
pp. 232–241.
[73]
Taylor G. The formation of a blast wave by a very intense explosion. I.
Theoretical discussion.
Proc. R. Soc. Lond. A
, 1950, vol. 201, no. 1065,
pp. 159–174.
[74]
Semerok A.F., Chaleard C., Detalle V., Kocon S., Lacour J.-L., Mauchien P.,
Meynadier P., Nouvellon C., Palianov P., Perdrix M., Petite G., Salle B. Laser
ablation efficiency of pure metals with femtosecond, picosecond, and
nanosecond pulses.
High-Power Laser Ablation
. Santa Fe, NM, USA, SPIE,
1998, pp. 1049–1055.
[75]
Liu H.C., Mao X.L., Yoo J.H., Russo R.E. Early phase laser induced plasma
diagnostics and mass removal during single-pulse laser ablation of silicon.
Spectrochimica Acta Part B: Atomic Spectroscopy
, 1999, vol. 54, no. 11,
pp. 1607–1624.
[76]
Fishburn J.M., Withford M.J., Coutts D.W., Piper J.A. Study of the fluence
dependent interplay between laser induced material removal mechanisms in
metals: Vaporization, melt displacement and melt ejection.
Applied Surface
Science
, 2006, vol. 252, no. 14, pp. 5182–5188.
[77] Dumont T., Bischofberger R., Lippert T., Wokaun A. Gravimetric and
profilometric measurements of the ablation rates of photosensitive polymers at
different wavelengths.
Applied Surface Science
, 2005, vol. 247, no. 1–4,
pp. 115–122.
[78]
Jacquot P. Speckle Interferometry: A Review of the Principal Methods in Use
for Experimental Mechanics Applications.
Strain
, 2008, vol. 44, no. 1, pp. 57–
69.
[79] Vorobyev A.Y., Guo C. Direct observation of enhanced residual thermal
energy coupling to solids in femtosecond laser ablation.
Applied Physics
Letters
, 2005, vol. 86, no. 1, pp. 011916-3.
[80] Martan J., Herve O., Lang V. Two-detector measurement system of pulse
photothermal radiometry for the investigation of the thermal properties of thin
films
. Journal of Applied Physics
, 2007, vol. 102, no. 6, p. 064903-6.
[81] Bayle F., Doubenskaia M. Selective laser melting process monitoring with high
speed infra-red camera and pyrometer.
Fundamentals of Laser Assisted Micro-
and Nanotechnologies, SPIE
, 2008, p. 698505-8.