Explicit formulas for the calculation of the complete tensor of the stresses in the monoclinic thin composite shells based on the asymptotic homogenization method
Authors: Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V.
Published in issue: #12(60)/2016
DOI: 10.18698/2308-6033-2016-12-1557
Category: Metallurgy and Science of Materials | Chapter: Powder Metallurgy and Composite Materials
The article presents the results of further development of the previously proposed by the authors' new asymptotic theory of thin multilayer anisotropic shells. The theory is constructed on the equations of the general three-dimensional theory of elasticity by introducing small geometric parameter asymptotic expansions without any hypotheses on stresses and displacements distribution over the thickness. The case of monoclinic layers having at the most 13 independent elastic constants is considered. An algorithm for obtaining explicit analytic formulas for the calculation of the complete stress tensor component distribution over the shell is proposed. The algorithm is based on solving specific local problems of the first, second and third approximations. It allows obtaining expressions for all six components of the stress tensor in a compact closed form, as a function of strain, curvature of the middle surface of the shell, as well as their derivatives with respect to the longitudinal coordinates. These formulas allow calculating all stress tensor components in the shell without additional tasks, using only the solutions of the averaged problem of shell theory.
References
[1] Dimitrienko Yu.I., Sborshchikov S.V., Prozorovskiy A.A., Gubareva E.A., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Krylov V.D., Grigoryev M.M. Kompozity i nanostruktury - Composites and Nanostructures, 2014, vol. 6, no. 1, pp. 32-48.
[2] Dimitrienko Yu.I. Thermomechanics of Composites under High Temperatures. Dordrecht; Boston; London, Kluwer Academic Publ., 1999, 347 p. [In Russ.: Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh. Moscow, Mashinostroenie Publ., 1997, 366 p.].
[3] Grigolyuk E.I., Kulikov G.M. Mekhanika kompozitsionnykh materialov - Mechanics of Composite Materials, 1989, vol. 24, no. 4, pp. 698-704.
[4] Gruttmann F., Wagner W. Computational Mechanics, 2001, vol. 27, p. 199-207.
[5] Ghugal Y.M., Shmipi R.P. Journal of Reinforced Plastics and Composites, 2001, vol. 20, no. 3, pp. 255-272.
[6] Tornabene F. Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, issues 9-12, pp. 931-952.
[7] Gondlyakh A.V. Vostochno-evropeyskiy zhurnal peredovykh tekhnologiy - Eastern European Advanced Technology Magazine, 2012, vol. 3/7 (57), pp. 62-68.
[8] Zveryaev E.M., Makarov G.I. Prikladnaya matematika i mekhanika - Journal of Applied Mathematics and Mechanics, 2008, vol. 72, no. 2, pp. 308-321.
[9] Zveryaev E.M. Prikladnaya matematika i mekhanika - Journal of Applied Mathematics and Mechanics, 2003, vol. 67, no. 3, pp. 472-483.
[10] Kohn R.V., Vogelius M. International Journal of Solids and Structure, 1984, vol. 20 (4), рp. 333-350.
[11] Panasenko G.P., Reztsov M.V. Doklady AN SSSR - Reports of AN USSR, 1987, vol. 394, no. 5, pp. 1061-1065.
[12] Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore; London, World Sci. Publ., 3000, 7З9 p.
[13] Kolpakov A.G. Homogenized models for thin-walled nonhomogeneous structures with initial stresses. Berlin, Heidelberg, Springer Verlag, 3004, 338 p.
[14] Sheshenin S.V. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela - Mechanics of Solids, 3006, no. 6, pp. 71-79.
[15] Nazarov S.A, Svirs G.H, Slutskiy A.S. Matematicheskiy Sbornik - Mathematics Collection, 3011, vol. 303, no. 8, pp. 41-80.
[16] Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Lomonosov MGU Publ., 1984, 334 p.
[17] Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh [Averaging processes in periodic media]. Moscow, Nauka Publ., 1984, 356 p.
[18] Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory. Berlin, Heidelberg, New York, Springer-Verlag Publ., 1980 [In Russ.: Sanches-Palensiya E. Neodnorodnye sredy i teoriya kolebaniy. Moscow, Mir Publ., 1984, 471 p.].
[19] Dimitrienko Yu.I., Kashkarov A.I. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 3003, no. 3, pp. 95-108.
[20] Dimitrienko Yu.I. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 3013, no. З. pp. 86-100.
[21] Dimitrienko Yu.I., Yakovlev D.O. Mekhanika kompozitsionnykh materialov i konstruktsiy - Mechanics of Composite Materials and Structures, 3014, vol. 30, no. 3, pp. 360-282.
[22] Dimitrienko Yu.I., Gubareva E., Sborshchikov S. Matematicheskoe modelirovanie i chislennye metody - Mathematical modeling and Computational Methods, 3014, no.1 (1), pp. З6-57.
[23] Dimitrienko Yu.I., Yakovlev D.O. Inzhenernyy zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 301З, issue 13. Available at: http://engjournal.ru/catalog/mathmodel/technic/899.html
[24] Dimitrienko Yu.I., Gubareva E., Shalygin I.S. Inzhenernyy zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 3015, issue 5 (39). DOI: 10.18698/2308-6033-2015-5-1405
[25] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 т. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. In 4 vol. Vol. 4. Fundamentals of Solid Mechanics]. Moscow, BMSTU Publ., 301З, 580 p.
[26] Dimitrienko Yu.I. Tenzornoe ischislenie [Calculus of Tensors]. Moscow, Vysshaya shkola Publ., 3001, 576 p.