Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Velocity field exact analytical solution for the Couette—Poiseille—Benard shear flow

Published: 17.09.2024

Authors: Berestova S.A., Prosviryakov E.Yu.

Published in issue: #9(153)/2024

DOI: 10.18698/2308-6033-2024-9-2382

Category: Mechanics | Chapter: Theoretical Mchanics, Machine Dynamics

The paper presents a particular analytical solution to the Navier—Stokes equations for describing the stationary Benard convection of the viscous incompressible fluid flow in the infinitely extended horizontal layer. It analyzes velocity field in the vertical vortex flow. The large-scale fluid flow is considered in approximation to a thin layer with the non-deformable boundaries. Two horizontal velocity vector components are taken into account. Shear flow appears when the lower boundary is heated/cooled, and the pressure gradient is at the upper boundary. Temperature and pressure are taken as the linear forms. Linear form coefficients depend on the vertical (transverse) coordinate. The priori unknown functions include polynomials describing the velocity field and are precisely determined from the sixth-order system of ordinary differential equations. The polynomials spectral properties are identified in the solution domain. Analysis of the polynomials zero distribution defining the velocity field makes it possible to determine the fluid layer stratification. The paper provides a detailed study of the stable reverse flows in the convective fluid flow of the Couette—Poiseuille—Benard type.

EDN MNDEXQ 


References
[1] Drazin P.G., Riley N. The Navier–Stokes equations: A classification of flows and exact solutions. Cambridge, Cambridge Univ. Press, 2006, 196 p. https://doi.org/10.1017/CBO9780511526459
[2] Ershkov S.V., Prosviryakov E.Yu., Burmasheva N.V., Christianto V. Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 2021, vol. 53 (4), p. 044501. https://doi.org/10.1088/1873–7005/ac10f0
[3] Andreev V.K., Bekezhanova V.B. Stability of nonisothermal fluids. J. Appl. Mech. Tech. Phys., 2013, vol. 54 (2), pp. 171–184. htps://10.1134/S0021894413020016
[4] Ershkov S., Burmasheva N.V., Leshchenko D.D., Prosviryakov E.Yu. Exact solutions of the Oberbeck–Boussinesq equations for the description of shear thermal diffusion of Newtonian fluid flows. Symmetry, 2023, vol. 15 (9), p. 1730. https://doi.org/10.3390/sym15091730
[5] Nemenyi P.F. Recent developments in inverse and semi–inverse methods in the mechanics of continua. Advances in Applied Mechanics, 1951, vol. 2, pp. 123–151.
[6] Kovalev V.P., Prosviryakov E.Yu. A new class of non-helical exact solutions of the Navier–Stokes equations. J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2020, vol. 24 (4), pp. 762–768. https://doi.org/10.14498/vsgtu1814
[7] Kovalev V.P., Prosviryakov E.Yu., Sizykh G.B. Poluchenie primerov tochnykh resheniy uravneniy Navye–Stoksa dlya vintovykh techeniy metodom summirovaniya skorostey [Obtaining examples of exact solutions of the Navier–Stokes equations for helical flows by the method of summation of velocities]. Trudy MFTI — Proceedings of MIPT, 2017, vol. 9, no. 1, pp. 71–88.
[8] Lin C.C. Note on a class of exact solutions in magnetohydrodynamics. Archive for Rational Mechanics and Analysis, 1958, vol. 1, pp. 391–395. https://doi.org/10.1007/BF00298016
[9] Sidorov A.F. O dvukh klassakh resheniy uravneniy mekhaniki zhidkosti i gaza i ikh svyazi s teoriey begushchikh voln [Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory]. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 1989, vol. 30, no. 2, pp. 197–203. https://10.1007/BF00852164
[10] Aristov S.N. Vikhrevye techeniya v tonkikh sloyakh zhidkosti. Dis. … d-ra fiz.-nat. nauk [Eddy currents in thin liquid layers. Diss. … Dr. Sc. (Phys.-Math.)]. Perm, 1990, 303 p.
[11] Aristov S.N., Prosviryakov E.Yu. Novyi klass tochnykh resheniy trekhmernykh uravneniy termodiffuzii [A new class of exact solutions for three-dimensional thermal diffusion equations]. Teoreticheskie osnovy khimicheskoy tekhnologii — Theoretical Foundations of Chemical Engineering, 2016, vol. 50, no. 3, pp. 294–301. https://doi.org/10.1134/S0040579516030027
[12] Ostroumov G.A. Svobodnaya konvektsiya v usloviyakh vnutrenney zadachi [Free convection under the conditions of the internal problem]. Moscow, Gos. Izd-vo Teknniko-Teoret. Lit-ry, 1952, 233 p.
[13] Birikh R.V. O termokapillyarnoy konvektsii v gorizontalnom sloe zhidkosti [Thermocapillary convection in a horizontal layer of liquid]. PMTF — Journal of Applied Mechanics and Technical Physics, 1966, vol. 3, pp. 69–72. https://10.1007/BF00914697
[14] Ortiz-Pérez A.S., Davalos-Orozco L.A. Convection in a horizontal fluid layer under an inclined temperature gradient. Phys. Fluids, 2011, vol. 28 (3), рр. 084107–084111.
[15] Smith M.K., Davis S.H. Instabilities of dynamic thermocapillary liquid layers. Pt. 1. Convective instabilities. J. Fluid Mech., 1983, vol. 132, pp. 119–144.
[16] Andreev V.K., Bekezhanova V.B. Ustoychivost neizotermicheskikh zhidkostey [Stability of non-isothermal fluids (Review)]. PMTF — Journal of Applied Mechanics and Technical Physics, 2013, vol. 54, pp. 171–184.
[17] Goncharova O., Kabov O. Gas flow and thermocapillary effects of fluid flow dynamics in a horizontal layer. Microgravity Sci. Technol., 2009, vol. 21 (1), pp. 129–137.
[18] Pukhnachev V.V. Nestatsionarnye analogi resheniya Birikha [Non-stationary analogues of the Birikh solution]. Izvestiya AltGU — Izvestiya of Altai State University, 2011, no. 1 (23), pp. 62–69.
[19] Burmasheva N.V., Privalova V.V., Prosviryakov E.Yu. Layered Marangoni convection with the Navier slip condition. In: Sadhana-Academy Proceedings in Engineering Sciences, 2021, vol. 46 (1). Article number: 55.
[20] Aristov S.N., Prosviryakov E.Yu. On laminar flows of planar free convection. Russ. J. Nonlin. Dyn., 2013, vol. 9, pp. 651–657.
[21] Aristov S., Prosviryakov E., Spevak L. Nestatsionarnaya sloistaya teplovaya i kontsentratsionnaya konvektsiya Maragoni vyazkoy neszhimaemoy zhidkosti [Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid]. Vychislitelnaya mekhanika sploshnykh sred — Computational Continuum Mechanics, 2015, vol. 4, pp. 445–456. https://doi.org/10.7242/1999-6691/2015.8.4.38
[22] Prosviryakov E., Spevak L. Prostranstvenno neodnorodnye sloistye techeniya vyazkoy neszhimaemoy zhidkosti [Layered three-dimensional nonuniform viscous incompressible flows]. Teoreticheskie osnovy khimicheskoy tekhnologii — Theoretical Foundations of Chemical Engineering, 2018, vol. 52 (5), pp. 483–488. https://doi.org/10.1134/S0040579518050391
[23] Shtern V.N. Counterflows: paradoxical fluid mechanics phenomena. Cambridge, New York, Cambridge University Press, 2012, 470 p. ISBN 978-1-107-02759-6
[24] Burmasheva N.V., Prosviryakov E.Yu. Tochnoe reshenie dlya ustanovivshikhsya konvektivnykh kontsentratsionnykh techeniy tipa Kuetta [Exact solution for stable convective concentration flows of a Couette type]. Vychislitelnaya mekhanika sploshnykh sred — Computational Continuum Mechanics, 2020, vol. 13 (3), pp. 337–349. https://doi.org/10.7242/1999-6691/2020.13.3.27
[25] Landau L.D., Lifshitz E.M. Course of Theoretical Physics: In 10 vols.: Vol. 6. Fluid Mechanics. 2nd ed. Oxford, Butterworth-Heinemann, 2003, 558 p.
[26] Aristov S.N., Prosviryakov E.Yu. Neodnorodnye techeniya Kuetta [Inhomogeneous Couette flows]. Nelineynaya dinamika — Nonlinear Dynamics, 2014, vol. 10 (2), pp. 177–182. https://doi.org/10.20537/nd1402004
[27] Berestova S.A., Prosviryakov E.Yu. An inhomogeneous steady-state convection of a vertical vortex fluid, Russ. J. Nonlin. Dyn., 2023, vol. 19 (2), pp. 167–186. https://doi.org/10.20537/nd230201
[28] Makarov K.A. O fizicheskom smysle chisla Reynoldsa i drugikh kriteriyakh gidrodinamicheskogo podobiya [On the physical meaning of Reynolds number and other criteria of hydrodynamic similarity]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, iss. 1. https://doi.org/10.18698/2308-6033-2014-1-1185
[29] Kondratyev A.S., Ogorodnik K.F. Opredelenie kriticheskikh parametrov potoka pri techeniyakh Puazeylya, Kuetta i Teylora–Kuetta [Determining critical flow parameters for the Poiseuille, Couette and Taylor–Couette flows]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 6. https://doi.org/10.18698/2308-6033-2020-6-1985
[30] Dou H.S., Khoo B.C., Tsai H.M. Determining the critical condition for flow transition in a full-developed annulus flow. Journal of Petroleum Science and Engineering, 2010, vol. 73 (1–2), pp. 41–47. https://doi.org/10.48550/arXiv.physics/0504193