Numerical study of the phenomenon of the accelerated rotor drag into the accelerated rotor resonance
Authors: Kiryukhin A.A.
Published in issue: #4(148)/2024
DOI: 10.18698/2308-6033-2024-4-2348
Category: Mechanics | Chapter: Theoretical Mchanics, Machine Dynamics
Rotor is a mandatory element of most turbomachines. With development of technologies in the mechanical engineering, a need arose for quantitative and qualitative assessment of the rotor system behavior during acceleration, which in turn is accompanied by passing through the system resonance. This paper considers methods for describing large turns using the Euler vector and the Zhilin tensor. The rotor method of describing large turns was tested using the example of a problem involving a rotor accelerating under the external torque influence. The considered system included rigid and weightless shaft, disk installed with the eccentricity and combined support with spherical joint and corner springs. It is shown that when resonance appears during the rotor acceleration, part of the rotational energy is converted into the transverse vibration energy, which leads to a decrease in the rotor rotation speed and an increase in the transverse vibration amplitude. This effect of dragging the rotor into resonance is most dangerous at the low rotor torques, since it takes much more time to pass the resonance, and the risk of rotor failure also increases as a result of the growing vibration amplitude. The proposed method for calculating the rotor system dynamics is recommended in developing the rotor acceleration algorithms, which are used when writing programs for the automated control systems.
EDN YYFBLZ
References
[1] Аl Mandhari N. Influence of Centrifugal Compressor System Components on its General Rotordynamic Characteristics. School of aerospace, final thesis report. Cranfield, Cranfield University, 2015, 181 p. Available at: https://dspace.lib.cranfield.ac.uk/handle/1826/12326?show=full (accessed March 11, 2024).
[2] Vyunov S.A., Khronin D.V., edit. Konstruktsiya i proektirovanie aviatsionnykh gazoturbinnykh dvigateley [Design and engineering of aviation gas turbine engines]. Moscow, Mashinostroenie Publ., 1989, 368 p.
[3] Belyaev E.N., Vorobyov A.G. Uskorennyi razgon busternogo nasosnogo agregata zhidkostnogo raketnogo dvigatelya pri ego zapuske [Accelerated unwinding of the rotor booster pump of liquid rocket engines under start-up conditions]. Vestnik SibGAU — The Siberian Aerospace Journal, 2016, vol. 17, no. 3, pp. 665–672. Available at: https://vestnik.sibsau.ru/arhiv/ (accessed March 11, 2024).
[4] Chechulin A.Y., Krivosheev I.A. Metodika ucheta moshchnosti, zatrachivaemoy na vrashchenie rotora aviatsionnogo dvigatelya, v nelineynoy dinamicheskoy modeli zapuska aviatsionnogo gazoturbinnogo dvigatelya [Methodology of accounting power expended on the rotation of a rotor of aircraft engine in nonlinear dynamic models of start of the aviation engine]. Vestnik PNIPU, Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2017, vol. 49, pp. 81–94. https://10.15593/2224-9982/2017.49.08
[5] Nikanorov V.B., Antanenkov A.A., Liskin A.S. et al. Analiz fizicheskikh yavleniy, voznikayushchikh pri razgone rotora elektromekhanicheskogo preobrazovatelya energii v magnitnykh oporakh [Analysis of physical phenomena occurring during acceleration of the rotor of an electromechanical energy converter in magnetic supports]. In: Elektromagnitnoe pole i materialy (fundamentalnye fizicheskie issledovaniya). XXIX Mezhdunarodnaya konferentsiya: materialy [Electromagnetic field and materials (fundamental physical research). XXIX International Conference: materials]. Moscow, MEI Publ., 2021, pp. 194–200.
[6] Ostanin S.Y., Antanenkov A.A., Liskin A.S., et al. Formirovanie matematicheskoy modeli i metoda rascheta protsessov pri razgone rotora elektromekhanicheskogo preobrazovatelya v magnitnykh oporakh [Formation of a mathematical model and a method for calculating processes during acceleration of the rotor of an electromechanical converter in magnetic supports]. In: Elektromagnitnoe pole i materialy (fundamentalnye fizicheskie issledovaniya). XXIX Mezhdunarodnaya konferentsiya: materialy [Electromagnetic field and materials (fundamental physical research). XXIX International Conference: materials]. Moscow, MEI Publ., 2021, pp. 201–207.
[7] Myasnikov V.Y. Issledovanie dinamiki aviatsionnogo dvigatelya pri obryve lopatki ventilyatora [Investigation of the aircraft engine dynamics in case of fan blade-out]. Aviatsionnye dvigateli — Aviation Engines, 2022, no. 2 (15), pp. 13–26. Available at: https://ciam.ru/journal/archive/nomera-zhurnalov/?SECTION_ID=141 (accessed March 19, 2024).
[8] Tomchin D.A. Algoritmy upravleniya prokhozhdeniem cherez zonu rezonansa v mekhatronnykh vibratsionnykh ustanovkakh. Avtoref. dis. … kand. tekhn. nauk. 05.11.16 [Algorithms for controlling the passage through the resonance zone in mechatronic vibration installations. Author’s abstract, Diss. ... Cand. Sc. (Eng.), 05.11.16]. St. Petersburg, Institut Problem Mashinostroeniya RAN Publ., 2006, 23 p.
[9] Popov V.V., Sorokin F.D., Ivannikov V.V. Razrabotka konechnogo elementa gibkogo sterzhnya s razdelnym khraneniem nakoplennykh i dopolnitelnykh povorotov dlya modelirovaniya peremeshcheniy elementov konstruktsiy letatelnykh apparatov [A flexible rod finite element with separate storage of cumulated and extra rotations for large displacements of aircraft structural parts modeling]. Trudy MAI, 2017, iss. 92. Available at: https://trudymai.ru/published.php?ID=76832 (accessed March 11, 2024).
[10] Nizametdinov F.R., Sorokin F.D. Osobennosti primeneniya vektora Eylera dlya opisaniya bolshikh povorotov pri modelirovanii elementov konstruktsiy letatelnykh apparatov na primere sterzhnevogo konechnogo elementa [Euler vector application specifics for large turns description while flying vehicles structural elements modeling on the example of a rod finite element]. Trudy MAI, 2018, iss. 102. Available at: https://trudymai.ru/published.php?ID=98753 (accessed March 11, 2024).
[11] Sorokin F.D., Zhang H. Kinematicheski tochnoe razdelenie bolshogo povorota na osevoy i poperechnyi v zadachakh rotornoy mekhaniki [Kinematically accurate separation of the large rotation into axial and transverse in problems of rotor dynamics]. Inzhenerny zhurnal: nauka I innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 10. https://doi.org/10.18698/2308-6033-2018-10-1815
[12] Sorokin F.D. Novyi sposob opisaniya bolshikh povorotov dlya zadach rotornoy dinamiki [A new way to describe large turns for rotary dynamics problems]. Problemy mashinostroeniya — Engineering and Automation Problems, 2019, iss. 7, pp. 30–37. Available at: https://sciencejournals.ru/view-article/?j=pminm&y=2019&v=0&n=7&a=PMiNM1907013Sorokin
[13] Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve [Vectors and tensors of the second rank in three-dimensional space]. St. Petersburg, SPbGTU Publ., 1992, 88 p.