Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Mathematical simulation of the axial-type powerturbomachine rotor system dynamic behaviorin case of a working blade out

Published: 15.02.2024

Authors: Dudaev M.A., Pykhalov A.A., Romanovich T.S.

Published in issue: #2(146)/2024

DOI: 10.18698/2308-6033-2024-2-2334

Category: Mechanics | Chapter: Theoretical Mchanics, Machine Dynamics

Rotor system (RS) is the main unit in the highly energy-intensive turbomachines, such as the gas turbine engines (GTE) operating for the aviation and ground purposes. Its stable operation in the design (standard) modes determines the machine reliability and durability as a whole. However, in a number of cases related to the mechanical system safety, the GTE RS operation analysis is required in the off-design (emergency) modes. One of them is the RS dynamic behavior in the case of the GTE fan working blade out. The paper presents computational and experimental approach to mathematical simulation of the GTE axial RS dynamic behavior when the fan stage rotor blade breaks. The low-pressure cascade rotor operating under conditions of a two-rotor system designed for a real dual-circuit GTE is considered as the study object. The RS build-up structure mathematical simulation is carried out on the basis of the finite element method (FEM) and solving the contact problem of the elasticity theory. The following dynamic modes sequence of the GTE operation is considered: increase in the rotor speed from zero to maximum, maximum mode, blade out, fuel cut-off, and the rotor with a blade-out passes into the autorotation mode. The blade-out is simulated using results of the GTE RS full-scale testing in the form of a diagram of alteration in the center of mass radius (imbalance) of the fan during the blade-out process. Numerical experiment presented in the work shows that, along with a significant increase in the oscillation amplitude at the blade-out moment, an additional peak (response) in oscillation amplitudes occurs during transition to the autorotation mode, and it is associated with the rotor operation in the flexible shaft mode. In general, the RS mathematical model shows fairly stable behavior in the presented abnormal mode, which is also confirmed by results of the full-scale testing.


[1] Inozemtsev A.A., Sandratskiy V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm, OAO Aviadvigatel Publ., 2006, 1204 p.
[2] Khronin D.V. Konstruktsiia i proektirovanie aviatsionnykh gazoturbinnykh dvigateley [Construction and design of aircraft gas turbine engines]. Moscow, Mashinostroenie Publ., 1989, 565 p.
[3] Khronin D.V. Teoriya i raschet kolebaniy v dvigateliakh letatelnykh apparatov [Theory and calculation of oscillations in aircraft engines]. Moscow, Mashinostroenie Publ., 1970, 412 p.
[4] Inozemtsev A.A., Nikhamkin M.A. Dinamika i prochnost aviatsionnykh dvigateley i energeticheskikh ustanovok [Dynamics and strength of aircraft engines and energy installations]. Perm, OAO Aviadvigatel Publ., 2008, vol. 4, 199 p.
[5] Miasnikov V.Yu. Issledovanie dinamiki aviatsionnogo dvigatelia pri obryve lopatki ventiliatora [Investigation of the aircraft engine dynamics in case of fan blade-out]. Aviatsionnye dvigateli — Aviation Engines, 2022, no. 2 (15), pp. 13–26.
[6] Kurteev V.A. Eksperimentalnoe modelirovanie udarnogo vzaimodeystviya otorvavsheysya lopatki s korpusom ventiliatora turboreaktivnogo dvigatelia [Experiment modeling under impact of torn vane with turbojet fan case]. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2018, no. 52, pp. 97–116.
[7] Yu P., Zhang D., Ma Y., Hong J. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with fan blade out. Mechanical Systems and Signal Processing, 2018, vol. 106, pp. 158–175.
[8] Wang C., Zhang D., Ma Y., Liang Z., Hong J. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off. Mechanical Systems and Signal Processing, 2016, vol. 76, pp. 111–135.
[9] Leontyev M.K., Davydov A.V., Degtyarev S.A., Gladkii I.L. K modelirovaniyu obryva lopatki dvigatelia bolshoy stepeni dvukhkonturnosti [To simulation of fan blade-out for an engine with high bypass ratio]. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika — University Proceedings. Russian Aeronautics, 2014, no. 2, pp. 33–38.
[10] Baluev B.A. Sposoby obryva lopatki pri ispytaniyakh korpusov na neprobivaemost [Methods of the blade release at casings containment capability]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva — Vestnik of Samara University. Aerospace and Mechanical Engineering, 2008, no. 3 (16), pp. 119–125.
[11] Bathe K.-J. Finite element procedures. Upper Saddle River, New Jersey, Prentice Hall, 1996, xiv, 1037 p.
[12] Chen Z. Finite Element Methods and Their Applications. Berlin, Springer, 2005, 411 p.
[13] Pykhalov A.A. Kontaktnaya zadacha staticheskogo i dinamicheskogo analiza sbornykh rotorov turbomashin. Dis. … d-ra. tekhn. nauk, 05.07.05 [Contact problem of static and dynamic analysis of the rotor assembly turbomachines. Diss. … Dr. Sc. (Eng.), 05.07.05]. Moscow, 2006, 428 p.
[14] Dudaev M.A., Pykhalov A.A. Kontaktnaya zadacha v analize dinamicheskogo povedeniia sbornykh rotorov turbomashin [The contact problem in the analysis of the dynamic behavior of modular turbomachine rotors]. Vestnik NGTU — Scientific Bulletin of NSTU, 2015, no. 3, pp. 113–129.
[15] Pykhalov A.A., Dudaev M.A., Kolotnikov M.Ye., et al. Dynamics of assembled structures of rotor systems of aviation gas turbine engines of type two-rotor. Vibroengineering Procedia: 22, Dynamics of Strongly Nonlinear Systems. Ser. “22nd International Conference on Vibroengineering”, 2016, no. 22, pp. 316–321.
[16] Dudaev M.A. (RF) Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM №2019617798. Konechnoelementnyi reshatel zadachi rotornoy dinamiki odno- i dvukhvalnykh turbomashin s kontaktnym vzaimodeystviem detaley i mezhvalnymi sviaziami [Certificate of state registration of the computer program No. 2019617798. Finite element solver of the problem of rotor dynamics of single- and two-shaft turbomachines with contact interaction of parts and inter-shaft connections]. Application no. 2019616638 dated June 11, 2019 (RF). Registered in the Computer Software Register on June 20, 2019 (RF).
[17] Analiz probivaemosti i optimizatsiya konstruktsii korpusov kompressora pri razlichnykh stsenariyakh obryva lopatki. Prognozirovanie dinamicheskogo povedeniya rotora pri obryve lopatki kompressora [Penetration analysis and optimization of the compressor housings design by various blade breakage chains. The rotor dynamic behavior predicting at the compressor blade breakage]. Otch. o NIR (sostavnaya chast), ruk. Mossakovskiy P.A.; ispoln.: Kostyreva L.A. [i dr.]. M., 2016, 175 s. Registratsionnyi nomer NIOKTR: 115052270013, registratsionnyi nomer IKRBS: AAAA-B16-216120870042-5 [Report on Research Work (constituent), head Mossakovskiy P.A., executor Kostyreva L.A. et al. Moscow, 2016, 175 p. NIOKTR Registration Number 115052270013, IKRBS Registration Number AAAA-B16-216120870042-5].