Approximate calculations of the eigenvalues of a rotating fluid flowing from an arbitrary axisymmetric capacity
Authors: Orlov V.V.
Published in issue: #11(107)/2020
DOI: 10.18698/2308-6033-2020-11-2029
Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma
The paper addresses the problem of proper motions of a rotating fluid that partially fills an axisymmetric vessel in the presence of an outflow through a rigid bottom. The problem is solved in a quasi-stationary setting within the framework of an ideal fluid model, with account for hydraulic losses during fluid flow through the bottom of the vessel. Numerical research was carried out using the finite element method. The study investigates the spectrum of eigenvalues and reveals the characteristics of the wave motions of the fluid. Numerical calculations confirm the possible appearance of wave motions on the drain surface, i.e. drain waves caused by the presence of fluid outflow through the bottom of the vessel. The paper presents the results of calculating the wavenumbers and the complex attenuation coefficient. Findings of the research can be used in practical calculations of dynamic modes at the design stage of promising space-rocket vehicles.
References
[1] Kelvin Lord. Vibrations of a columnar vortex. Phil. Mag., 1880, vol. 10, pp. 155‒168.
[2] Taylor G.I. Experiments with rotating fluids. Proc. Cambridge Phil. Soc., 1921, vol. 100, no. 703 (Nov. 1, 1921), pp. 114–121.
[3] Rayleigh Lord. On the stability, or instability of certain fluid motions. Proc. London Math. Soc., 1880, vol. 11, pp. 57‒70.
[4] Proudman J. The almost rigid rotation of viscous fluid between concentric spheres. J. Fluid Mech., 1956, vol. 1, pp. 505‒516.
[5] Grace S.F. Free motion of a sphere in a rotating liquid at right angle to the аxis of rotation. Proc. Roy. Soc., 1923, A 104, pp. 278‒301.
[6] Stewartson K. On almost rigid rotations. J. Fluid Mech., 1957, vol. 3, pp. 17‒26.
[7] Greenspan H.P. The Theory of Rotating Fluids. Univ. Pr., 1969, 328 p. [In Russ.: Greenspan H.P. Teoriya vrashchayuschikhsya zhidkostey. Leningrad, Gidrometeoizdat Publ., 1975, 303 p.].
[8] Sretensky L.N. Teoriya volnovykh dvizheniy zhidkosti [The theory of wave motion of fluid]. Moscow, Nauka Publ., 1977, 815 p.
[9] Miropolskiy Yu.Z. Dinamika vnutrennikh gravitatsionnykh voln v okeane [Dynamics of internal gravity waves in the ocean]. Leningrad, Gidrometeoizdat Publ., 1981, 384 p.
[10] Sobolev S.L. Zhurn. prikl. mekhaniki i teoret. fiziki — Journal of Applied Mechanics and Technical Physics, 1960, no. 3, pp. 20‒55. Zbl. 105.18103
[11] Sobolev S.L. Izv. AN SSSR. Ser. mat. (Proceedings of the USSR Academy of Sciences. Mathematical Ser.), 1954, vol. 18, no. 1, pp. 3‒50.
[12] Maslennikova V.N. Matematicheskie voprosy gidrodinamiki vrashchayuscheysya zhidkosti i sistemy S.L. Soboleva. Avtoref. dis. dokt. fiz.-mat nauk [Mathematical problems in the hydrodynamics of a rotating fluid and the system of S.L. Sobolev. Dr. phys.-and-math. sc. author’s abstract]. Novosibirsk, 1971, 28 p.
[13] Aleksandrian R.A. K voprosu o zavisimosti kachestven¬nykh svoystv reshenii nekotorykh smeshannykh zadach ot vida oblasti. Dis. kand. fiz.-mat. nauk [On the question of the dependence of the qualitative properties of solutions of some mixed problems on the type of area. Cand. phys.-and-math. sc. diss.]. Moscow, MSU Publ., 1959, 71 p.
[14] Zeleniak T.I. Izbrannye voprosy kachestvennoy teorii uravneniy s chastnymi proizvodnymi [Selected questions of the qualitative theory of partial differential equations]. Novosibirsk, NSU Publ., 1970.
[15] Grigorev Yu.N. Dinamika sploshnoy sredy (Continuum dynamics), 1973, no. 15, pp. 36‒54.
[16] Kopachevskiy N.D. Malye dvizheniya i sobstvennye kolebaniya idealnoy vraschayuscheysya zhidkosti [Small movements and natural vibrations of an ideal rotating fluid]. Kharkov, Institute of Low Temperature Physics and Technology Publ., 1978, preprint no. 38-71, 54 p.
[17] Troitskaya S.D. O zavisimosti spektra zadachi S.L. Soboleva ot geometrii oblasti [On the dependence of the spectrum of the problem S.L. Sobolev from the geometry of the area] In: Izbrannye voprosy algebry, geometrii i diskretnoy matematiki [Selected questions of algebra, geometry and discrete mathematics]. Moscow, MSU Publ., 1992, pp. 138‒147.
[18] Kopachevskii N.D., Krein S.G., Ngo Zui Kan. Operatornye metody v lineynoy gidrodinamike [Operator methods in linear hydrodynamics]. Moscow, Nauka Publ., 1989, 416 p.
[19] Maslennikova V.N. Matemat. Sb. (Mathematical Collection), 1973, no. 92 (134): 4(12), pp. 589‒610.
[20] Gabov S.A., Sveshnikov A.G. Zadachi dinamiki stratifitsirovannykh zhidkostey [Problems of the dynamics of stratified fluids]. Moscow, Nauka Publ., 1986, 288 p.
[21] Rvalov R.V. Izvestiya AN SSSR, MZhG — Fluid Dynamics, 1973, no. 4, pp. 81‒88.
[22] Chernousko F.L. Dvizheniya tvyordogo tela s polostyami soderzhaschimi vyazkuyu zhidkost [The movement of a solid body with cavities containing a viscous fluid]. Moscow, CC USSR AS Publ., 1968.
[23] Gontkevich V.S. Sobstvennye kolebaniya vraschayuscheysya zhidkosti v sosudakh [Natural vibrations of a rotating fluid in vessels]. In: Gidromehanika. Respubl. mezhved. sb. [Fluid mechanics. Republican inter-institutional collection of papers]. 1972, no. 20, pp. 52‒58.
[24] Smirnova Е.P. Izvestiya AN SSSR, MZhG — Fluid Dynamics, 1975, no. 5. pp. 41.
[25] Gurchenkov A.A. Dinamika zavikhrennoy zhidkosti v polosti vrashchayushchegosya tverdogo tela [Swirling fluid dynamics in the cavity of a rotating solid body]. Moscow, Fizmatlit Publ., 2012, 221 p.
[26] Bulatov V.V., Vladimirov Yu.V. Volny v stratifitsirovannykh sredakh [Waves in stratified media]. Moscow, Nauka Publ., 2015, 735 p.
[27] Akhmetov D.G., Vladimirov V.A., Ilin K.I., Makarenko V.G., Nikulin V.V., Tarasov V.F. Gidrodinamika vikhrevykh techeniy (bibliograficheskii ukazatel) [Hydrodynamics of vortex flows (bibliographic guide)]. Novosibirsk, Lavrentyev Institute of Hydrodynamics Publ., 1988, 181 p.
[28] Orlov V.V., Temnov A.N. Malye dvizheniya zhidkosti, vytekayushchey iz baka [Small movements of liquid flowing out of the tank]. In: Sovremennye metody teorii funktsii i smezhnye problem [Modern methods of function theory and related problems]. Voronezh, 1997.
[29] Orlov V.V., Temnov A.N. Inzhenerno-fizicheskiy zhurnal — Journal of Engineering Physics and Thermophysics, 2000, vol. 73, no. 1, p. 165.
[30] D’iachenko M.I., Orlov V.V., Temnov A.N. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2012, no. 3, pp. 31‒38.
[31] Orlov V.V., Temnov A.N. Inzhenerny zhurnal: nauka i innovatsii — Enginee-ring Journal: Science and Innovation, 2019, iss. 8. DOI: 10.18698/2308-6033-2019-8-1907
[32] Molchanov I.N., Nikolenko L.D. Osnovy metoda konechnykh elementov [Fundamentals of the finite element method]. Kiev, Naukova Dumka Publ., 1989, 260 p.